Add a tool to split mp3 files into arbitrary chunks of wav files
This commit is contained in:
parent
01cfae28d8
commit
4100469902
41
codes/data/audio/random_mp3_splitter.py
Normal file
41
codes/data/audio/random_mp3_splitter.py
Normal file
|
@ -0,0 +1,41 @@
|
|||
import audio2numpy
|
||||
from scipy.io import wavfile
|
||||
from tqdm import tqdm
|
||||
|
||||
from data.util import find_audio_files
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import os.path as osp
|
||||
|
||||
if __name__ == '__main__':
|
||||
src_dir = 'E:\\audio\\books'
|
||||
clip_length = 5 # In seconds
|
||||
sparsity = .05 # Only this proportion of the total clips are extracted as wavs.
|
||||
output_sample_rate=22050
|
||||
output_dir = 'E:\\audio\\books-clips'
|
||||
|
||||
files = find_audio_files(src_dir, include_nonwav=True)
|
||||
for e, file in enumerate(tqdm(files)):
|
||||
if e < 7250:
|
||||
continue
|
||||
file_basis = osp.relpath(file, src_dir).replace('/', '_').replace('\\', '_')
|
||||
try:
|
||||
wave, sample_rate = audio2numpy.open_audio(file)
|
||||
except:
|
||||
print(f"Error with {file}")
|
||||
continue
|
||||
wave = torch.tensor(wave)
|
||||
# Strip out channels.
|
||||
if len(wave.shape) > 1:
|
||||
wave = wave[0] # Just use the first channel.
|
||||
|
||||
# Calculate how much data we need to extract for each clip.
|
||||
clip_sz = sample_rate * clip_length
|
||||
interval = int(sample_rate * (clip_length / sparsity))
|
||||
i = 0
|
||||
while (i+clip_sz) < wave.shape[-1]:
|
||||
clip = wave[i:i+clip_sz]
|
||||
clip = F.interpolate(clip.view(1,1,clip_sz), scale_factor=output_sample_rate/sample_rate).squeeze()
|
||||
wavfile.write(osp.join(output_dir, f'{file_basis}_{i}.wav'), output_sample_rate, clip.numpy())
|
||||
i = i + interval
|
|
@ -7,7 +7,7 @@ import torchaudio
|
|||
from tqdm import tqdm
|
||||
|
||||
from data.audio.wav_aug import WavAugmentor
|
||||
from data.util import get_image_paths, is_wav_file
|
||||
from data.util import find_files_of_type, is_wav_file
|
||||
from models.tacotron2.taco_utils import load_wav_to_torch
|
||||
from utils.util import opt_get
|
||||
|
||||
|
@ -21,7 +21,7 @@ class WavfileDataset(torch.utils.data.Dataset):
|
|||
self.audiopaths = torch.load(cache_path)
|
||||
else:
|
||||
print("Building cache..")
|
||||
self.audiopaths = get_image_paths('img', opt['path'], qualifier=is_wav_file)[0]
|
||||
self.audiopaths = find_files_of_type('img', opt['path'], qualifier=is_wav_file)[0]
|
||||
torch.save(self.audiopaths, cache_path)
|
||||
|
||||
# Parse options
|
||||
|
|
|
@ -10,7 +10,7 @@ from utils.util import opt_get
|
|||
class ChunkWithReference:
|
||||
def __init__(self, opt, path):
|
||||
self.path = path.path
|
||||
self.tiles, _ = util.get_image_paths('img', self.path)
|
||||
self.tiles, _ = util.find_files_of_type('img', self.path)
|
||||
self.need_metadata = opt_get(opt, ['strict'], False) or opt_get(opt, ['needs_metadata'], False)
|
||||
self.need_ref = opt_get(opt, ['need_ref'], False)
|
||||
if 'ignore_first' in opt.keys():
|
||||
|
|
|
@ -29,17 +29,17 @@ class FullImageDataset(data.Dataset):
|
|||
self.LQ_env, self.GT_env = None, None
|
||||
self.force_multiple = self.opt['force_multiple'] if 'force_multiple' in self.opt.keys() else 1
|
||||
|
||||
self.paths_GT, self.sizes_GT = util.get_image_paths(self.data_type, opt['dataroot_GT'], opt['dataroot_GT_weights'])
|
||||
self.paths_GT, self.sizes_GT = util.find_files_of_type(self.data_type, opt['dataroot_GT'], opt['dataroot_GT_weights'])
|
||||
if 'dataroot_LQ' in opt.keys():
|
||||
self.paths_LQ = []
|
||||
if isinstance(opt['dataroot_LQ'], list):
|
||||
# Multiple LQ data sources can be given, in case there are multiple ways of corrupting a source image and
|
||||
# we want the model to learn them all.
|
||||
for dr_lq in opt['dataroot_LQ']:
|
||||
lq_path, self.sizes_LQ = util.get_image_paths(self.data_type, dr_lq)
|
||||
lq_path, self.sizes_LQ = util.find_files_of_type(self.data_type, dr_lq)
|
||||
self.paths_LQ.append(lq_path)
|
||||
else:
|
||||
lq_path, self.sizes_LQ = util.get_image_paths(self.data_type, opt['dataroot_LQ'])
|
||||
lq_path, self.sizes_LQ = util.find_files_of_type(self.data_type, opt['dataroot_LQ'])
|
||||
self.paths_LQ.append(lq_path)
|
||||
|
||||
assert self.paths_GT, 'Error: GT path is empty.'
|
||||
|
|
|
@ -85,7 +85,7 @@ class ImageFolderDataset:
|
|||
imgs = torch.load(cache_path)
|
||||
else:
|
||||
print("Building image folder cache, this can take some time for large datasets..")
|
||||
imgs = util.get_image_paths('img', path)[0]
|
||||
imgs = util.find_files_of_type('img', path)[0]
|
||||
torch.save(imgs, cache_path)
|
||||
for w in range(weight):
|
||||
self.image_paths.extend(imgs)
|
||||
|
|
|
@ -40,7 +40,7 @@ class MultiScaleDataset(data.Dataset):
|
|||
self.num_scales = self.opt['num_scales']
|
||||
self.hq_size_cap = self.tile_size * 2 ** self.num_scales
|
||||
self.scale = self.opt['scale']
|
||||
self.paths_hq, self.sizes_hq = util.get_image_paths(self.data_type, opt['paths'], [1 for _ in opt['paths']])
|
||||
self.paths_hq, self.sizes_hq = util.find_files_of_type(self.data_type, opt['paths'], [1 for _ in opt['paths']])
|
||||
self.corruptor = ImageCorruptor(opt)
|
||||
|
||||
|
||||
|
|
|
@ -39,10 +39,16 @@ def cv2torch(cv, batchify=True):
|
|||
def is_image_file(filename):
|
||||
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
|
||||
|
||||
|
||||
def is_wav_file(filename):
|
||||
return filename.endswith('.wav')
|
||||
|
||||
|
||||
def is_audio_file(filename):
|
||||
AUDIO_EXTENSIONS = ['.wav', '.mp3', '.wma', 'm4b']
|
||||
return any(filename.endswith(extension) for extension in AUDIO_EXTENSIONS)
|
||||
|
||||
|
||||
def _get_paths_from_images(path, qualifier=is_image_file):
|
||||
"""get image path list from image folder"""
|
||||
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
|
||||
|
@ -67,14 +73,14 @@ def _get_paths_from_lmdb(dataroot):
|
|||
return paths, sizes
|
||||
|
||||
|
||||
def get_image_paths(data_type, dataroot, weights=[], qualifier=is_image_file):
|
||||
"""get image path list
|
||||
support lmdb or image files"""
|
||||
paths, sizes = None, None
|
||||
if dataroot is not None:
|
||||
if data_type == 'lmdb':
|
||||
paths, sizes = _get_paths_from_lmdb(dataroot)
|
||||
elif data_type == 'img':
|
||||
def find_audio_files(dataroot, include_nonwav=False):
|
||||
if include_nonwav:
|
||||
return find_files_of_type(None, dataroot, qualifier=is_audio_file)[0]
|
||||
else:
|
||||
return find_files_of_type(None, dataroot, qualifier=is_wav_file)[0]
|
||||
|
||||
|
||||
def find_files_of_type(data_type, dataroot, weights=[], qualifier=is_image_file):
|
||||
if isinstance(dataroot, list):
|
||||
paths = []
|
||||
for i in range(len(dataroot)):
|
||||
|
@ -91,8 +97,6 @@ def get_image_paths(data_type, dataroot, weights=[], qualifier=is_image_file):
|
|||
else:
|
||||
paths = sorted(_get_paths_from_images(dataroot, qualifier))
|
||||
sizes = len(paths)
|
||||
else:
|
||||
raise NotImplementedError('data_type [{:s}] is not recognized.'.format(data_type))
|
||||
return paths, sizes
|
||||
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@ import torch
|
|||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from data.util import is_wav_file, get_image_paths
|
||||
from data.util import is_wav_file, find_files_of_type
|
||||
from models.audio_resnet import resnet34, resnet50
|
||||
from models.tacotron2.taco_utils import load_wav_to_torch
|
||||
from scripts.byol.byol_extract_wrapped_model import extract_byol_model_from_state_dict
|
||||
|
@ -12,7 +12,7 @@ from scripts.byol.byol_extract_wrapped_model import extract_byol_model_from_stat
|
|||
if __name__ == '__main__':
|
||||
window = 48000
|
||||
root_path = 'D:\\tmp\\clips'
|
||||
paths = get_image_paths('img', root_path, qualifier=is_wav_file)[0]
|
||||
paths = find_files_of_type('img', root_path, qualifier=is_wav_file)[0]
|
||||
clips = []
|
||||
for path in paths:
|
||||
clip, sr = load_wav_to_torch(os.path.join(root_path, path))
|
||||
|
|
|
@ -39,7 +39,7 @@ class TiledDataset(data.Dataset):
|
|||
def __init__(self, opt):
|
||||
self.opt = opt
|
||||
input_folder = opt['input_folder']
|
||||
self.images = data_util.get_image_paths('img', input_folder)[0]
|
||||
self.images = data_util.find_files_of_type('img', input_folder)[0]
|
||||
print("Found %i images" % (len(self.images),))
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
|
|
@ -115,7 +115,7 @@ class VideoClipDataset(data.Dataset):
|
|||
os.makedirs(frames_out, exist_ok=False)
|
||||
n = random.randint(5, 30)
|
||||
self.extract_n_frames(path, frames_out, start, n)
|
||||
frames = data_util.get_image_paths('img', frames_out)[0]
|
||||
frames = data_util.find_files_of_type('img', frames_out)[0]
|
||||
assert len(frames) == n
|
||||
img_runs.append(([self.get_image_tensor(frame) for frame in frames], frames_out))
|
||||
start += random.randint(2,5)
|
||||
|
|
Loading…
Reference in New Issue
Block a user