flat diffusion network

This commit is contained in:
James Betker 2022-03-17 10:53:56 -06:00
parent bf08519d71
commit 428911cd4d
2 changed files with 311 additions and 1 deletions

View File

@ -0,0 +1,304 @@
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import autocast
from x_transformers import Encoder
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, \
Downsample, Upsample, TimestepBlock
from models.audio.tts.mini_encoder import AudioMiniEncoder
from models.audio.tts.unet_diffusion_tts7 import CheckpointedXTransformerEncoder
from scripts.audio.gen.use_diffuse_tts import ceil_multiple
from trainer.networks import register_model
from utils.util import checkpoint
def is_latent(t):
return t.dtype == torch.float
def is_sequence(t):
return t.dtype == torch.long
class ResBlock(TimestepBlock):
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
dims=2,
kernel_size=3,
efficient_config=True,
use_scale_shift_norm=False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_scale_shift_norm = use_scale_shift_norm
padding = {1: 0, 3: 1, 5: 2}[kernel_size]
eff_kernel = 1 if efficient_config else 3
eff_padding = 0 if efficient_config else 1
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding),
)
self.emb_layers = nn.Sequential(
nn.SiLU(),
linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding)
def forward(self, x, emb):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
return checkpoint(
self._forward, x, emb
)
def _forward(self, x, emb):
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = torch.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
class DiffusionLayer(nn.Module):
def __init__(self, model_channels, aligned_channels, cond_channels, dropout, num_heads):
super().__init__()
self.aligned_mutation = zero_module(conv_nd(1, aligned_channels, model_channels, 1))
self.cond_mutation = zero_module(conv_nd(1, cond_channels, model_channels, 1))
self.inp_mutation = conv_nd(1, model_channels, model_channels, 1)
self.resblk = ResBlock(model_channels, model_channels, dropout, model_channels, dims=1, use_scale_shift_norm=True)
self.attn = AttentionBlock(model_channels, num_heads)
def forward(self, x, aligned, pointwise, time_emb):
a = self.aligned_mutation(aligned)
c = self.cond_mutation(pointwise.unsqueeze(-1))
f = self.inp_mutation(x)
y = self.resblk(f + c.repeat(1,1,f.shape[-1]) + F.interpolate(a, size=f.shape[-1], mode='nearest'), time_emb)
y = self.attn(y)
return y
class DiffusionTtsFlat(nn.Module):
def __init__(
self,
model_channels=512,
num_layers=8,
in_channels=100,
in_latent_channels=512,
in_tokens=8193,
max_timesteps=4000,
max_positions=4000,
out_channels=200, # mean and variance
dropout=0,
use_fp16=False,
num_heads=16,
# Parameters for regularization.
layer_drop=.1,
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
):
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.dropout = dropout
self.num_heads = num_heads
self.unconditioned_percentage = unconditioned_percentage
self.enable_fp16 = use_fp16
self.layer_drop = layer_drop
self.inp_block = conv_nd(1, in_channels, model_channels, 3, 1, 1)
self.position_embed = nn.Embedding(max_positions, model_channels)
self.time_embed = nn.Embedding(max_timesteps, model_channels)
# Either code_converter or latent_converter is used, depending on what type of conditioning data is fed.
# This model is meant to be able to be trained on both for efficiency purposes - it is far less computationally
# complex to generate tokens, while generating latents will normally mean propagating through a deep autoregressive
# transformer network.
self.code_converter = nn.Sequential(
nn.Embedding(in_tokens, model_channels),
CheckpointedXTransformerEncoder(
needs_permute=False,
max_seq_len=-1,
use_pos_emb=False,
attn_layers=Encoder(
dim=model_channels,
depth=3,
heads=num_heads,
ff_dropout=dropout,
attn_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
rotary_emb_dim=True,
)
))
self.latent_converter = nn.Conv1d(in_latent_channels, model_channels, 1)
if in_channels > 60: # It's a spectrogram.
self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2),
CheckpointedXTransformerEncoder(
needs_permute=True,
max_seq_len=-1,
use_pos_emb=False,
attn_layers=Encoder(
dim=model_channels,
depth=4,
heads=num_heads,
ff_dropout=dropout,
attn_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
rotary_emb_dim=True,
)
))
else:
self.contextual_embedder = AudioMiniEncoder(1, model_channels, base_channels=32, depth=6, resnet_blocks=1,
attn_blocks=3, num_attn_heads=8, dropout=dropout, downsample_factor=4, kernel_size=5)
self.conditioning_conv = nn.Conv1d(model_channels*2, model_channels, 1)
self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,1))
self.conditioning_timestep_integrator = TimestepEmbedSequential(
ResBlock(model_channels, model_channels, dropout, out_channels=model_channels, dims=1, kernel_size=1, use_scale_shift_norm=True),
AttentionBlock(model_channels, num_heads=num_heads),
ResBlock(model_channels, model_channels, dropout, out_channels=model_channels, dims=1, kernel_size=1, use_scale_shift_norm=True),
AttentionBlock(model_channels, num_heads=num_heads),
ResBlock(model_channels, model_channels, dropout, out_channels=model_channels, dims=1, kernel_size=1, use_scale_shift_norm=True),
)
self.layers = nn.ModuleList([DiffusionLayer(model_channels, model_channels, model_channels, dropout, num_heads) for _ in range(num_layers)])
self.out = nn.Sequential(
normalization(model_channels),
nn.SiLU(),
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
)
def get_grad_norm_parameter_groups(self):
groups = {
'minicoder': list(self.contextual_embedder.parameters()),
'layers': list(self.layers),
}
return groups
def forward(self, x, timesteps, aligned_conditioning, conditioning_input, lr_input=None, conditioning_free=False):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced.
:param conditioning_input: a full-resolution audio clip that is used as a reference to the style you want decoded.
:param lr_input: for super-sampling models, a guidance audio clip at a lower sampling rate.
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
:return: an [N x C x ...] Tensor of outputs.
"""
# Shuffle aligned_latent to BxCxS format
if is_latent(aligned_conditioning):
aligned_conditioning = aligned_conditioning.permute(0, 2, 1)
# Note: this block does not need to repeated on inference, since it is not timestep-dependent or x-dependent.
unused_params = []
if conditioning_free:
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, 1)
else:
unused_params.append(self.unconditioned_embedding)
cond_emb = self.contextual_embedder(conditioning_input)
if len(cond_emb.shape) == 3: # Just take the first element.
cond_emb = cond_emb[:, :, 0]
if is_latent(aligned_conditioning):
code_emb = self.latent_converter(aligned_conditioning)
unused_params.extend(list(self.code_converter.parameters()))
else:
code_emb = self.code_converter(aligned_conditioning)
unused_params.extend(list(self.latent_converter.parameters()))
cond_emb_spread = cond_emb.unsqueeze(-1).repeat(1, 1, code_emb.shape[-1])
code_emb = self.conditioning_conv(torch.cat([cond_emb_spread, code_emb], dim=1))
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
if self.training and self.unconditioned_percentage > 0:
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
device=code_emb.device) < self.unconditioned_percentage
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(x.shape[0], 1, 1),
code_emb)
# Everything after this comment is timestep dependent.
x = self.inp_block(x)
pos_emb = self.position_embed(torch.arange(0, x.shape[-1], device=x.device)).unsqueeze(0).repeat(x.shape[0],1,1).permute(0,2,1)
x = x + pos_emb
time_emb = self.time_embed(timesteps)
code_emb = self.conditioning_timestep_integrator(code_emb, time_emb)
for i, lyr in enumerate(self.layers):
# Do layer drop where applicable. Do not drop first and last layers.
if self.layer_drop > 0 and i != 0 and i != (len(self.layers)-1) and random.random() < self.layer_drop:
unused_params.extend(list(lyr.parameters()))
else:
# First and last blocks will have autocast disabled for improved precision.
with autocast(x.device.type, enabled=self.enable_fp16 and i != 0):
x = lyr(x, code_emb, cond_emb, time_emb)
x = x.float()
out = self.out(x)
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
extraneous_addition = 0
for p in unused_params:
extraneous_addition = extraneous_addition + p.mean()
out = out + extraneous_addition * 0
return out
@register_model
def register_diffusion_tts_flat(opt_net, opt):
return DiffusionTtsFlat(**opt_net['kwargs'])
if __name__ == '__main__':
clip = torch.randn(2, 100, 400)
aligned_latent = torch.randn(2,388,512)
aligned_sequence = torch.randint(0,8192,(2,388))
cond = torch.randn(2, 100, 400)
ts = torch.LongTensor([600, 600])
model = DiffusionTtsFlat(512, layer_drop=.3)
# Test with latent aligned conditioning
o = model(clip, ts, aligned_latent, cond)
# Test with sequence aligned conditioning
o = model(clip, ts, aligned_sequence, cond)

View File

@ -327,7 +327,13 @@ class ExtensibleTrainer(BaseModel):
else: else:
pgroups = {f'{name}_all_parameters': list(model.parameters())} pgroups = {f'{name}_all_parameters': list(model.parameters())}
for name in pgroups.keys(): for name in pgroups.keys():
grad_norms[name] = torch.norm(torch.stack([torch.norm(p.grad.detach(), 2) for p in pgroups[name]]), 2) stacked_grads = []
for p in pgroups[name]:
if hasattr(p, 'grad') and p.grad is not None:
stacked_grads.append(torch.norm(p.grad.detach(), 2))
if not stacked_grads:
continue
grad_norms[name] = torch.norm(torch.stack(stacked_grads), 2)
if distributed.is_available() and distributed.is_initialized(): if distributed.is_available() and distributed.is_initialized():
# Gather the metric from all devices if in a distributed setting. # Gather the metric from all devices if in a distributed setting.
distributed.all_reduce(grad_norms[name], op=distributed.ReduceOp.SUM) distributed.all_reduce(grad_norms[name], op=distributed.ReduceOp.SUM)