diff --git a/codes/models/arch_util.py b/codes/models/arch_util.py index 425098aa..13c5f2f8 100644 --- a/codes/models/arch_util.py +++ b/codes/models/arch_util.py @@ -378,7 +378,6 @@ class ResBlock(nn.Module): dropout, out_channels=None, use_conv=False, - use_scale_shift_norm=False, dims=2, up=False, down=False, @@ -389,7 +388,6 @@ class ResBlock(nn.Module): self.dropout = dropout self.out_channels = out_channels or channels self.use_conv = use_conv - self.use_scale_shift_norm = use_scale_shift_norm padding = 1 if kernel_size == 3 else 2 self.in_layers = nn.Sequential( @@ -427,7 +425,7 @@ class ResBlock(nn.Module): else: self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) - def forward(self, x, emb): + def forward(self, x): """ Apply the block to a Tensor, conditioned on a timestep embedding. @@ -435,7 +433,7 @@ class ResBlock(nn.Module): :return: an [N x C x ...] Tensor of outputs. """ return checkpoint( - self._forward, x, emb + self._forward, x ) def _forward(self, x): diff --git a/codes/train.py b/codes/train.py index 01ee2044..55783417 100644 --- a/codes/train.py +++ b/codes/train.py @@ -327,7 +327,7 @@ class Trainer: if __name__ == '__main__': parser = argparse.ArgumentParser() - parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_tortoise_random_latent_gen_diffuser.yml') + parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../experiments/train_mel_upsampler.yml') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') args = parser.parse_args() opt = option.parse(args.opt, is_train=True) diff --git a/codes/trainer/eval/music_diffusion_fid.py b/codes/trainer/eval/music_diffusion_fid.py index e50c0c5e..9b364982 100644 --- a/codes/trainer/eval/music_diffusion_fid.py +++ b/codes/trainer/eval/music_diffusion_fid.py @@ -22,7 +22,7 @@ from models.diffusion.gaussian_diffusion import get_named_beta_schedule from models.diffusion.respace import space_timesteps, SpacedDiffusion from scripts.audio.gen.speech_synthesis_utils import load_discrete_vocoder_diffuser, wav_to_mel, load_speech_dvae, \ convert_mel_to_codes, load_univnet_vocoder, wav_to_univnet_mel -from trainer.injectors.audio_injectors import denormalize_tacotron_mel, TorchMelSpectrogramInjector +from trainer.injectors.audio_injectors import denormalize_tacotron_mel, TorchMelSpectrogramInjector, pixel_shuffle_1d from utils.util import ceil_multiple, opt_get, load_model_from_config, pad_or_truncate @@ -64,10 +64,11 @@ class MusicDiffusionFid(evaluator.Evaluator): else: real_resampled = audio audio = audio.unsqueeze(0) - output_shape = audio.shape + output_shape = (1, 16, audio.shape[-1] // 16) mel = self.spec_fn({'in': audio})['out'] gen = self.diffuser.p_sample_loop(self.model, output_shape, noise=torch.zeros(*output_shape, device=audio.device), model_kwargs={'aligned_conditioning': mel}) + gen = pixel_shuffle_1d(gen, 16) real_resampled = real_resampled + torch.FloatTensor(real_resampled.shape).uniform_(0.0, 1e-5).to(real_resampled.device) return gen, real_resampled, sample_rate @@ -149,8 +150,8 @@ class MusicDiffusionFid(evaluator.Evaluator): if __name__ == '__main__': diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_waveform_gen3.yml', 'generator', also_load_savepoint=False, - load_path='X:\\dlas\\experiments\\train_music_waveform_gen3_r0\\models\\15400_generator_ema.pth').cuda() - opt_eval = {'path': 'Y:\\split\\yt-music-eval', 'diffusion_steps': 100, + load_path='X:\\dlas\\experiments\\train_music_waveform_gen3_r1\\models\\10000_generator_ema.pth').cuda() + opt_eval = {'path': 'Y:\\split\\yt-music-eval', 'diffusion_steps': 50, 'conditioning_free': False, 'conditioning_free_k': 1, 'diffusion_schedule': 'linear', 'diffusion_type': 'standard'} env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 1, 'device': 'cuda', 'opt': {}}