ressurect ctc code gen with some cool new ideas

This commit is contained in:
James Betker 2022-05-24 14:02:33 -06:00
parent 65b441d74e
commit 48aab2babe
6 changed files with 208 additions and 11 deletions

View File

@ -542,7 +542,6 @@ class Wav2Vec2GumbelVectorQuantizer(nn.Module):
idxs = codevector_idx.view(batch_size, sequence_length, self.num_groups)
return idxs
def forward(self, hidden_states, mask_time_indices=None):
batch_size, sequence_length, hidden_size = hidden_states.shape
@ -660,6 +659,14 @@ class ContrastiveTrainingWrapper(nn.Module):
codes = self.quantizer.get_codes(proj)
return codes
def reconstruct(self, mel):
proj = self.m2v.input_blocks(mel).permute(0,2,1)
_, proj = self.m2v.projector(proj)
quantized_features, codevector_perplexity = self.quantizer(proj)
quantized_features = self.project_q(quantized_features)
reconstruction = self.reconstruction_net(quantized_features.permute(0,2,1))
return reconstruction
def forward(self, mel, inp_lengths=None):
mel = mel[:, :, :-1] # The MEL computation always pads with 1, throwing off optimal tensor math.
features_shape = (mel.shape[0], mel.shape[-1]//self.m2v.dim_reduction_mult)

View File

@ -0,0 +1,121 @@
from random import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.audio.tts.unet_diffusion_tts7 import CheckpointedLayer
from models.lucidrains.x_transformers import Encoder
from trainer.networks import register_model
from utils.util import opt_get
class CheckpointedXTransformerEncoder(nn.Module):
"""
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
to channels-last that XTransformer expects.
"""
def __init__(self, **xtransformer_kwargs):
super().__init__()
self.transformer = XTransformer(**xtransformer_kwargs)
for xform in [self.transformer.encoder, self.transformer.decoder.net]:
for i in range(len(xform.attn_layers.layers)):
n, b, r = xform.attn_layers.layers[i]
xform.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
def forward(self, *args, **kwargs):
return self.transformer(*args, **kwargs)
class CtcCodeGenerator(nn.Module):
def __init__(self, model_dim=512, layers=10, max_length=2048, dropout=.1, ctc_codes=256, max_pad=120, max_repeat=30):
super().__init__()
self.max_pad = max_pad
self.max_repeat = max_repeat
self.ctc_codes = ctc_codes
pred_codes = (max_pad+1)*(max_repeat+1)
self.position_embedding = nn.Embedding(max_length, model_dim)
self.codes_embedding = nn.Embedding(ctc_codes, model_dim)
self.recursive_embedding = nn.Embedding(pred_codes, model_dim)
self.mask_embedding = nn.Parameter(torch.randn(model_dim))
self.encoder = Encoder(
dim=model_dim,
depth=layers,
heads=model_dim//64,
ff_dropout=dropout,
attn_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
rotary_pos_emb=True,
)
self.pred_head = nn.Linear(model_dim, pred_codes)
self.confidence_head = nn.Linear(model_dim, 1)
def inference(self, codes, pads, repeats):
position_h = self.position_embedding(torch.arange(0, codes.shape[-1], device=codes.device))
codes_h = self.codes_embedding(codes)
labels = pads + repeats * self.max_pad
mask = labels == 0
recursive_h = self.recursive_embedding(labels)
recursive_h[mask] = self.mask_embedding
h = self.encoder(position_h + codes_h + recursive_h)
pred_logits = self.pred_head(h)
confidences = self.confidence_head(h).squeeze(-1)
confidences = F.softmax(confidences * mask, dim=-1)
return pred_logits, confidences
def forward(self, codes, pads, repeats, unpadded_lengths):
if unpadded_lengths is not None:
max_len = unpadded_lengths.max()
codes = codes[:, :max_len]
pads = pads[:, :max_len]
repeats = repeats[:, :max_len]
if pads.max() > self.max_pad:
print(f"Got unexpectedly long pads. Max: {pads.max()}, {pads}")
pads = torch.clip(pads, 0, self.max_pad)
if repeats.max() > self.max_repeat:
print(f"Got unexpectedly long repeats. Max: {repeats.max()}, {repeats}")
repeats = torch.clip(repeats, 0, self.max_repeat)
assert codes.max() < self.ctc_codes, codes.max()
labels = pads + repeats * self.max_pad
position_h = self.position_embedding(torch.arange(0, codes.shape[-1], device=codes.device))
codes_h = self.codes_embedding(codes)
recursive_h = self.recursive_embedding(labels)
mask_prob = random()
mask = torch.rand_like(labels.float()) > mask_prob
for b in range(codes.shape[0]):
mask[b, unpadded_lengths[b]:] = False
recursive_h[mask.logical_not()] = self.mask_embedding
h = self.encoder(position_h + codes_h + recursive_h)
pred_logits = self.pred_head(h)
loss = F.cross_entropy(pred_logits.permute(0,2,1), labels, reduce=False)
confidences = self.confidence_head(h).squeeze(-1)
confidences = F.softmax(confidences * mask, dim=-1)
confidence_loss = loss * confidences
loss = loss / loss.shape[-1] # This balances the confidence_loss and loss.
return loss.mean(), confidence_loss.mean()
@register_model
def register_ctc_code_generator(opt_net, opt):
return CtcCodeGenerator(**opt_get(opt_net, ['kwargs'], {}))
if __name__ == '__main__':
model = CtcCodeGenerator()
inps = torch.randint(0,36, (4, 300))
pads = torch.randint(0,100, (4,300))
repeats = torch.randint(0,20, (4,300))
loss = model(inps, pads, repeats)
print(loss.shape)

View File

@ -0,0 +1,63 @@
from itertools import groupby
import torch
from transformers import Wav2Vec2CTCTokenizer
from models.audio.tts.ctc_code_generator import CtcCodeGenerator
def get_ctc_metadata(codes):
if isinstance(codes, torch.Tensor):
codes = codes.tolist()
grouped = groupby(codes)
rcodes, repeats, pads = [], [], [0]
for val, group in grouped:
if val == 0:
pads[-1] = len(list(
group)) # This is a very important distinction! It means the padding belongs to the character proceeding it.
else:
rcodes.append(val)
repeats.append(len(list(group)))
pads.append(0)
rcodes = torch.tensor(rcodes)
# These clip values are sane maximum values which I did not see in the datasets I have access to.
repeats = torch.clip(torch.tensor(repeats), min=1, max=30)
pads = torch.clip(torch.tensor(pads[:-1]), max=120)
return rcodes, pads, repeats
if __name__ == '__main__':
model = CtcCodeGenerator(model_dim=512, layers=16, dropout=0).eval().cuda()
model.load_state_dict(torch.load('../experiments/train_encoder_build_ctc_alignments_toy/models/76000_generator_ema.pth'))
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained('jbetker/tacotron-symbols')
text = "and now, what do you want."
seq = [0, 0, 0, 38, 51, 51, 41, 11, 11, 51, 51, 0, 0, 0, 0, 52, 0, 60, 0, 0, 0, 0, 0, 0, 6, 11, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 60, 45, 0, 38, 57, 57, 11, 0, 41, 52, 52, 11, 11, 62, 52, 52, 58, 0, 11, 11, 60, 0, 0, 0, 0, 38, 0, 0, 51, 51, 0, 0, 57, 0, 0, 7, 7, 0, 0, 0]
codes, pads, repeats = get_ctc_metadata(seq)
with torch.no_grad():
codes = codes.cuda().unsqueeze(0)
pads = pads.cuda().unsqueeze(0)
repeats = repeats.cuda().unsqueeze(0)
ppads = pads.clone()
prepeats = repeats.clone()
mask = torch.zeros_like(pads)
conf_str = tokenizer.decode(codes[0].tolist())
for s in range(codes.shape[-1]):
logits, confidences = model.inference(codes, pads * mask, repeats * mask)
confidences = confidences * mask.logical_not() # prevent prediction of tokens that have already been predicted.
i = confidences.argmax(dim=-1)
pred = logits[0,i].argmax()
pred_pads = pred % model.max_pad
pred_repeats = pred // model.max_pad
ppads[0,i] = pred_pads
prepeats[0,i] = pred_repeats
mask[0,i] = 1
conf_str = conf_str[:i] + conf_str[i].upper() + conf_str[i+1:]
print(f"conf: {conf_str} pads={pred_pads}:{pads[0,i].item()} repeats={pred_repeats}:{repeats[0,i].item()}")

View File

@ -1,7 +1,8 @@
import torch
import torchvision
from models.audio.mel2vec import ContrastiveTrainingWrapper
from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector
from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector, normalize_mel
from utils.util import load_audio
def collapse_codegroups(codes):
@ -24,17 +25,22 @@ def recover_codegroups(codes, groups):
if __name__ == '__main__':
model = ContrastiveTrainingWrapper(mel_input_channels=256, inner_dim=1024, layers=24, dropout=0, mask_time_prob=0,
mask_time_length=6, num_negatives=100, codebook_size=8, codebook_groups=8, disable_custom_linear_init=True)
model.load_state_dict(torch.load("../experiments/m2v_music.pth"))
mask_time_length=6, num_negatives=100, codebook_size=16, codebook_groups=4,
disable_custom_linear_init=True, feature_producer_type='standard',
freq_mask_percent=0, do_reconstruction_loss=True)
model.load_state_dict(torch.load("../experiments/m2v_music2.pth"))
model.eval()
wav = load_audio("Y:/separated/bt-music-1/100 Hits - Running Songs 2014 CD 2/100 Hits - Running Songs 2014 Cd2 - 02 - 7Th Heaven - Ain't Nothin' Goin' On But The Rent/00001/no_vocals.wav", 22050)
mel = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 22000, 'normalize': True, 'in': 'in', 'out': 'out'}, {})({'in': wav.unsqueeze(0)})['out']
mel = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000,
'normalize': True, 'in': 'in', 'out': 'out'}, {})({'in': wav.unsqueeze(0)})['out']
codes = model.get_codes(mel)
codes2 = model.get_codes(mel)
reconstruction = model.reconstruct(mel)
torchvision.utils.save_image((normalize_mel(mel).unsqueeze(1)+1)/2, 'mel.png')
torchvision.utils.save_image((normalize_mel(reconstruction).unsqueeze(1)+1)/2, 'reconstructed.png')
collapsed = collapse_codegroups(codes)
recovered = recover_codegroups(collapsed, 8)
recovered = recover_codegroups(collapsed, 4)
print(codes)

View File

@ -332,7 +332,7 @@ class Trainer:
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_music_diffusion_flat.yml')
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_encoder_build_ctc_alignments.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
args = parser.parse_args()
opt = option.parse(args.opt, is_train=True)

View File

@ -69,7 +69,7 @@ class MusicDiffusionFid(evaluator.Evaluator):
self.diffusion_fn = self.perform_diffusion_from_codes
self.local_modules['codegen'] = get_music_codegen()
self.spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000,
'normalize': True, 'do_normalization': True, 'in': 'in', 'out': 'out'}, {})
'normalize': True, 'in': 'in', 'out': 'out'}, {})
def load_data(self, path):
return list(glob(f'{path}/*.wav'))
@ -86,7 +86,7 @@ class MusicDiffusionFid(evaluator.Evaluator):
model_kwargs={'aligned_conditioning': mel})
gen = pixel_shuffle_1d(gen, 16)
return gen, real_resampled, self.spec_fn({'in': gen})['out'], mel, sample_rate
return gen, real_resampled, normalize_mel(self.spec_fn({'in': gen})['out']), normalize_mel(mel), sample_rate
def gen_freq_gap(self, mel, band_range=(60,100)):
gap_start, gap_end = band_range