some updates

This commit is contained in:
James Betker 2022-06-06 09:13:47 -06:00
parent 602df0abbc
commit 49568ee16f
4 changed files with 382 additions and 11 deletions

View File

@ -458,10 +458,12 @@ class AttentionBlock(nn.Module):
num_head_channels=-1,
use_new_attention_order=False,
do_checkpoint=True,
do_activation=False,
):
super().__init__()
self.channels = channels
self.do_checkpoint = do_checkpoint
self.do_activation = do_activation
if num_head_channels == -1:
self.num_heads = num_heads
else:
@ -492,7 +494,10 @@ class AttentionBlock(nn.Module):
def _forward(self, x, mask=None):
b, c, *spatial = x.shape
x = x.reshape(b, c, -1)
qkv = self.qkv(self.norm(x))
x = self.norm(x)
if self.do_activation:
x = F.silu(x, inplace=True)
qkv = self.qkv(x)
h = self.attention(qkv, mask)
h = self.proj_out(h)
return (x + h).reshape(b, c, *spatial)

View File

@ -3,31 +3,57 @@ from torch import nn
import torch.nn.functional as F
from transformers import GPT2Config, GPT2Model
from models.arch_util import AttentionBlock
from models.audio.music.music_quantizer import MusicQuantizer
from models.audio.music.music_quantizer2 import MusicQuantizer2
from trainer.networks import register_model
from utils.util import opt_get
class GptMusic(nn.Module):
class ConditioningEncoder(nn.Module):
def __init__(self,
spec_dim,
embedding_dim,
attn_blocks=6,
num_attn_heads=4):
super().__init__()
attn = []
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=3, stride=2, padding=1)
for a in range(attn_blocks):
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_activation=True))
self.attn = nn.Sequential(*attn)
self.dim = embedding_dim
def forward(self, x):
h = self.init(x)
h = self.attn(h)
return h.mean(dim=2)
class GptMusicLower(nn.Module):
def __init__(self, dim, layers, num_target_vectors=512, num_target_groups=2, cv_dim=1024, num_upper_vectors=64, num_upper_groups=4):
super().__init__()
self.num_groups = num_target_groups
self.config = GPT2Config(vocab_size=1, n_positions=8192, n_embd=dim, n_layer=layers, n_head=dim//64,
n_inner=dim*2)
self.target_quantizer = MusicQuantizer(inp_channels=256, inner_dim=[1024,1024,512], codevector_dim=cv_dim, codebook_size=num_target_vectors, codebook_groups=num_target_groups)
self.upper_quantizer = MusicQuantizer2(inp_channels=256, inner_dim=[1024,896,768,640,512,384], codevector_dim=cv_dim, codebook_size=num_upper_vectors, codebook_groups=num_upper_groups)
# Following are unused quantizer constructs we delete to avoid DDP errors (and to be efficient.. of course..)
del self.target_quantizer.decoder
del self.target_quantizer.up
self.upper_quantizer = MusicQuantizer2(inp_channels=256, inner_dim=[1024,896,768,640,512,384], codevector_dim=cv_dim, codebook_size=num_upper_vectors, codebook_groups=num_upper_groups)
del self.upper_quantizer.up
self.conditioning_encoder = ConditioningEncoder(256, dim, attn_blocks=4, num_attn_heads=dim//64)
self.gpt = GPT2Model(self.config)
del self.gpt.wte # Unused, we'll do our own embeddings.
self.embeddings = nn.ModuleList([nn.Embedding(num_target_vectors, dim // num_target_groups) for _ in range(num_target_groups)])
self.upper_proj = nn.Conv1d(cv_dim, dim, kernel_size=1)
self.heads = nn.ModuleList([nn.Linear(dim, num_target_vectors) for _ in range(num_target_groups)])
def forward(self, mel):
def forward(self, mel, conditioning):
with torch.no_grad():
self.target_quantizer.eval()
codes = self.target_quantizer.get_codes(mel)
@ -37,11 +63,17 @@ class GptMusic(nn.Module):
upper_vector = upper_vector.permute(0,2,1)
inputs = codes[:, :-1]
targets = codes
upper_vector = upper_vector[:, :-1]
targets = codes[:, 1:]
h = [embedding(inputs[:, :, i]) for i, embedding in enumerate(self.embeddings)]
h = torch.cat(h, dim=-1) + upper_vector
# Stick the conditioning embedding on the front of the input sequence.
# The transformer will learn how to integrate it.
# This statement also serves to pre-pad the inputs by one token, which is the basis of the next-token-prediction task. IOW: this is the "START" token.
cond_emb = self.conditioning_encoder(conditioning).unsqueeze(1)
h = torch.cat([cond_emb, h], dim=1)
h = self.gpt(inputs_embeds=h, return_dict=True).last_hidden_state
losses = 0
@ -54,11 +86,11 @@ class GptMusic(nn.Module):
@register_model
def register_music_gpt(opt_net, opt):
return GptMusic(**opt_get(opt_net, ['kwargs'], {}))
def register_music_gpt_lower(opt_net, opt):
return GptMusicLower(**opt_get(opt_net, ['kwargs'], {}))
if __name__ == '__main__':
model = GptMusic(512, 12)
model = GptMusicLower(512, 12)
mel = torch.randn(2,256,400)
model(mel)
model(mel, mel)

View File

@ -0,0 +1,334 @@
import itertools
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.audio.music.music_quantizer2 import MusicQuantizer2
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
from models.diffusion.unet_diffusion import TimestepBlock, AttentionBlock, TimestepEmbedSequential
from models.lucidrains.x_transformers import Encoder
from trainer.networks import register_model
from utils.util import checkpoint, print_network
def is_latent(t):
return t.dtype == torch.float
def is_sequence(t):
return t.dtype == torch.long
class MultiGroupEmbedding(nn.Module):
def __init__(self, tokens, groups, dim):
super().__init__()
self.m = nn.ModuleList([nn.Embedding(tokens, dim // groups) for _ in range(groups)])
def forward(self, x):
h = [embedding(x[:, :, i]) for i, embedding in enumerate(self.m)]
return torch.cat(h, dim=-1)
class ResBlock(TimestepBlock):
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
dims=2,
kernel_size=3,
efficient_config=False,
use_scale_shift_norm=False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_scale_shift_norm = use_scale_shift_norm
padding = {1: 0, 3: 1, 5: 2}[kernel_size]
eff_kernel = 1 if efficient_config else 3
eff_padding = 0 if efficient_config else 1
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding),
)
self.emb_layers = nn.Sequential(
nn.SiLU(),
linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding)
def forward(self, x, emb):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
return checkpoint(
self._forward, x, emb
)
def _forward(self, x, emb):
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = torch.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
class DiffusionLayer(TimestepBlock):
def __init__(self, model_channels, dropout, num_heads):
super().__init__()
self.resblk = ResBlock(model_channels, model_channels, dropout, model_channels, dims=1, use_scale_shift_norm=True)
self.attn = AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True)
def forward(self, x, time_emb):
y = self.resblk(x, time_emb)
return self.attn(y)
class TransformerDiffusion(nn.Module):
"""
A diffusion model composed entirely of stacks of transformer layers. Why would you do it any other way?
"""
def __init__(
self,
model_channels=512,
prenet_layers=3,
num_layers=8,
in_channels=256,
input_vec_dim=512,
out_channels=512, # mean and variance
dropout=0,
use_fp16=False,
# Parameters for regularization.
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
):
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.dropout = dropout
self.unconditioned_percentage = unconditioned_percentage
self.enable_fp16 = use_fp16
self.inp_block = conv_nd(1, in_channels, model_channels, 3, 1, 1)
self.time_embed = nn.Sequential(
linear(model_channels, model_channels),
nn.SiLU(),
linear(model_channels, model_channels),
)
self.input_converter = nn.Linear(input_vec_dim, model_channels)
self.code_converter = Encoder(
dim=model_channels,
depth=prenet_layers,
heads=model_channels//64,
ff_dropout=dropout,
attn_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
rotary_pos_emb=True,
zero_init_branch_output=True,
ff_mult=1,
)
self.unconditioned_embedding = nn.Parameter(torch.randn(1,1,model_channels))
self.intg = nn.Conv1d(model_channels*2, model_channels, kernel_size=1)
self.layers = TimestepEmbedSequential(*[DiffusionLayer(model_channels, dropout, model_channels // 64) for _ in range(num_layers)])
self.out = nn.Sequential(
normalization(model_channels),
nn.SiLU(),
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
)
self.debug_codes = {}
def get_grad_norm_parameter_groups(self):
groups = {
'layers': list(self.layers.parameters()) + list(self.inp_block.parameters()),
'code_converters': list(self.input_converter.parameters()) + list(self.code_converter.parameters()),
'time_embed': list(self.time_embed.parameters()),
}
return groups
def timestep_independent(self, codes, expected_seq_len):
code_emb = self.input_converter(codes)
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
if self.training and self.unconditioned_percentage > 0:
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
device=code_emb.device) < self.unconditioned_percentage
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(codes.shape[0], 1, 1),
code_emb)
code_emb = self.code_converter(code_emb)
expanded_code_emb = F.interpolate(code_emb.permute(0,2,1), size=expected_seq_len, mode='nearest').permute(0,2,1)
return expanded_code_emb
def forward(self, x, timesteps, codes=None, conditioning_input=None, precomputed_code_embeddings=None, conditioning_free=False):
if precomputed_code_embeddings is not None:
assert codes is None and conditioning_input is None, "Do not provide precomputed embeddings and the other parameters. It is unclear what you want me to do here."
unused_params = []
if conditioning_free:
code_emb = self.unconditioned_embedding.repeat(x.shape[0], x.shape[-1], 1)
unused_params.extend(list(self.code_converter.parameters()))
else:
if precomputed_code_embeddings is not None:
code_emb = precomputed_code_embeddings
else:
code_emb = self.timestep_independent(codes, x.shape[-1])
unused_params.append(self.unconditioned_embedding)
code_emb = code_emb.permute(0,2,1)
blk_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
x = self.inp_block(x)
x = self.intg(torch.cat([x, code_emb], dim=1))
for layer in self.layers:
x = checkpoint(layer, x, blk_emb)
x = x.float()
out = self.out(x)
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
extraneous_addition = 0
for p in unused_params:
extraneous_addition = extraneous_addition + p.mean()
out = out + extraneous_addition * 0
return out
class TransformerDiffusionWithQuantizer(nn.Module):
def __init__(self, freeze_quantizer_until=20000, **kwargs):
super().__init__()
self.internal_step = 0
self.freeze_quantizer_until = freeze_quantizer_until
self.diff = TransformerDiffusion(**kwargs)
self.quantizer = MusicQuantizer2(inp_channels=256, inner_dim=[1024], codevector_dim=1024, codebook_size=256,
codebook_groups=2, max_gumbel_temperature=4, min_gumbel_temperature=.5)
self.quantizer.quantizer.temperature = self.quantizer.min_gumbel_temperature
del self.quantizer.up
def update_for_step(self, step, *args):
self.internal_step = step
qstep = max(0, self.internal_step - self.freeze_quantizer_until)
self.quantizer.quantizer.temperature = max(
self.quantizer.max_gumbel_temperature * self.quantizer.gumbel_temperature_decay ** qstep,
self.quantizer.min_gumbel_temperature,
)
def forward(self, x, timesteps, truth_mel, conditioning_input, disable_diversity=False, conditioning_free=False):
quant_grad_enabled = self.internal_step > self.freeze_quantizer_until
with torch.set_grad_enabled(quant_grad_enabled):
proj, diversity_loss = self.quantizer(truth_mel, return_decoder_latent=True)
proj = proj.permute(0,2,1)
# Make sure this does not cause issues in DDP by explicitly using the parameters for nothing.
if not quant_grad_enabled:
unused = 0
for p in self.quantizer.parameters():
unused = unused + p.mean() * 0
proj = proj + unused
diversity_loss = diversity_loss * 0
diff = self.diff(x, timesteps, codes=proj, conditioning_input=conditioning_input, conditioning_free=conditioning_free)
if disable_diversity:
return diff
return diff, diversity_loss
def get_debug_values(self, step, __):
if self.quantizer.total_codes > 0:
return {'histogram_codes': self.quantizer.codes[:self.quantizer.total_codes]}
else:
return {}
def get_grad_norm_parameter_groups(self):
groups = {
'attention_layers': list(itertools.chain.from_iterable([lyr.attn.parameters() for lyr in self.diff.layers])),
'res_layers': list(itertools.chain.from_iterable([lyr.resblk.parameters() for lyr in self.diff.layers])),
'quantizer_encoder': list(self.quantizer.encoder.parameters()),
'quant_codebook': [self.quantizer.quantizer.codevectors],
'out': list(self.diff.out.parameters()),
'x_proj': list(self.diff.inp_block.parameters()),
'layers': list(self.diff.layers.parameters()),
'code_converters': list(self.diff.input_converter.parameters()) + list(self.diff.code_converter.parameters()),
'time_embed': list(self.diff.time_embed.parameters()),
}
return groups
@register_model
def register_transformer_diffusion9(opt_net, opt):
return TransformerDiffusion(**opt_net['kwargs'])
@register_model
def register_transformer_diffusion8_with_quantizer(opt_net, opt):
return TransformerDiffusionWithQuantizer(**opt_net['kwargs'])
"""
# For TFD5
if __name__ == '__main__':
clip = torch.randn(2, 256, 400)
aligned_sequence = torch.randn(2,100,512)
cond = torch.randn(2, 256, 400)
ts = torch.LongTensor([600, 600])
model = TransformerDiffusion(model_channels=3072, model_channels=1536, model_channels=1536)
torch.save(model, 'sample.pth')
print_network(model)
o = model(clip, ts, aligned_sequence, cond)
"""
if __name__ == '__main__':
clip = torch.randn(2, 256, 400)
cond = torch.randn(2, 256, 400)
ts = torch.LongTensor([600, 600])
model = TransformerDiffusionWithQuantizer(model_channels=1024, input_vec_dim=1024, num_layers=16, prenet_layers=6)
model.get_grad_norm_parameter_groups()
quant_weights = torch.load('D:\\dlas\\experiments\\train_music_quant_r4\\models\\5000_generator.pth')
#diff_weights = torch.load('X:\\dlas\\experiments\\train_music_diffusion_tfd5\\models\\48000_generator_ema.pth')
model.quantizer.load_state_dict(quant_weights, strict=False)
#model.diff.load_state_dict(diff_weights)
torch.save(model.state_dict(), 'sample.pth')
print_network(model)
o = model(clip, ts, clip, cond)

View File

@ -658,7 +658,7 @@ class UNetMusicModel(nn.Module):
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
if conditioning_free:
expanded_code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1])
expanded_code_emb = self.unconditioned_embedding.repeat(x.shape[0], x.shape[-1], 1).permute(0,2,1)
unused_params.extend(list(self.code_converter.parameters()) + list(self.input_converter.parameters()))
else:
code_emb = self.input_converter(y)