diff --git a/codes/scripts/extract_square_images.py b/codes/scripts/extract_square_images.py index b6ff8cb7..4a6d5869 100644 --- a/codes/scripts/extract_square_images.py +++ b/codes/scripts/extract_square_images.py @@ -13,14 +13,18 @@ import torch def main(): split_img = False opt = {} - opt['n_thread'] = 20 + opt['n_thread'] = 5 opt['compression_level'] = 90 # JPEG compression quality rating. # CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer # compression time. If read raw images during training, use 0 for faster IO speed. opt['dest'] = 'file' - opt['input_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\imgset2' - opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\imgset_raw_2' + opt['input_folder'] = ['F:\\4k6k\\datasets\\images\\div2k\\DIV2K_train_HR', + 'F:\\4k6k\\datasets\\images\\flickr\\flickr2k\\Flickr2K_HR', + 'F:\\4k6k\\datasets\\images\\flickr\\flickr-scrape\\filtered', + 'F:\\4k6k\\datasets\\images\\goodeats\\hq\\new_season\\images', + 'F:\\4k6k\datasets\\images\\youtube\\images'] + opt['save_folder'] = 'F:\\4k6k\\datasets\\images\\ge_full_1024' opt['imgsize'] = 1024 save_folder = opt['save_folder'] @@ -35,7 +39,7 @@ class TiledDataset(data.Dataset): def __init__(self, opt): self.opt = opt input_folder = opt['input_folder'] - self.images = data_util._get_paths_from_images(input_folder) + self.images = data_util.get_image_paths('img', input_folder)[0] def __getitem__(self, index): return self.get(index)