Model arch cleanup
This commit is contained in:
parent
7dff802144
commit
4d29b7729e
|
@ -1,80 +0,0 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
import torch.nn.functional as F
|
||||
|
||||
def conv3x3(in_planes, out_planes, stride=1):
|
||||
"""3x3 convolution with padding"""
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False)
|
||||
|
||||
def conv5x5(in_planes, out_planes, stride=1):
|
||||
"""5x5 convolution with padding"""
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=5, stride=stride,
|
||||
padding=2, bias=False)
|
||||
|
||||
def conv7x7(in_planes, out_planes, stride=1):
|
||||
"""7x7 convolution with padding"""
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=7, stride=stride,
|
||||
padding=3, bias=False)
|
||||
|
||||
def conv1x1(in_planes, out_planes, stride=1):
|
||||
"""1x1 convolution"""
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
||||
|
||||
class SequenceDistributed(nn.Module):
|
||||
def __init__(self, module, batch_first=False):
|
||||
super(SequenceDistributed, self).__init__()
|
||||
self.module = module
|
||||
self.batch_first = batch_first
|
||||
|
||||
def forward(self, x):
|
||||
if len(x.size()) <= 2:
|
||||
return self.module(x)
|
||||
|
||||
# Squash samples and timesteps into a single axis
|
||||
x_reshape = x.contiguous().view(-1, x.size(-1)) # (samples * timesteps, input_size)
|
||||
|
||||
y = self.module(x_reshape)
|
||||
|
||||
# We have to reshape Y
|
||||
if self.batch_first:
|
||||
y = y.contiguous().view(x.size(0), -1, y.size(-1)) # (samples, timesteps, output_size)
|
||||
else:
|
||||
y = y.view(-1, x.size(1), y.size(-1)) # (timesteps, samples, output_size)
|
||||
|
||||
return y
|
||||
|
||||
# Input into this block is of shape (sequence, filters, width, height)
|
||||
# Output is (attention_hidden_size, width, height)
|
||||
class ConvAttentionBlock(nn.Module):
|
||||
|
||||
def __init__(self, planes, attention_hidden_size=8, query_conv=conv1x1, key_conv=conv1x1, value_conv=conv1x1):
|
||||
super(ConvAttentionBlock, self).__init__()
|
||||
self.query_conv_dist = SequenceDistributed(query_conv(planes, attention_hidden_size))
|
||||
self.key_conv_dist = SequenceDistributed(key_conv(planes, attention_hidden_size))
|
||||
self.value_conv_dist = value_conv(planes, attention_hidden_size)
|
||||
self.hidden_size = attention_hidden_size
|
||||
|
||||
def forward(self, x):
|
||||
# All values come out of this with the shape (batch, sequence, hidden, width, height)
|
||||
query = self.query_conv_dist(x)
|
||||
key = self.key_conv_dist(x)
|
||||
value = self.value_conv_dist(x)
|
||||
|
||||
# Permute to (batch, width, height, sequence, hidden)
|
||||
query = query.permute(0, 3, 4, 1, 2)
|
||||
key = key.permute(0, 3, 4, 1, 2)
|
||||
value = value.permute(0, 3, 4, 1, 2)
|
||||
|
||||
# Perform attention operation.
|
||||
scores = torch.matmul(query, key.transpose(-2, -1)) / torch.sqrt(self.hidden_size)
|
||||
scores = torch.softmax(scores, dim=-1)
|
||||
result = torch.matmul(scores, value)
|
||||
|
||||
# Collapse out the sequence dim.
|
||||
result = torch.sum(result, dim=-2)
|
||||
|
||||
# Permute back to (batch, hidden, width, height)
|
||||
result = result.permute(0, 3, 1, 2)
|
||||
return result
|
|
@ -1,134 +0,0 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def conv3x3(in_planes, out_planes, stride=1):
|
||||
"""3x3 convolution with padding"""
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False)
|
||||
|
||||
|
||||
def conv1x1(in_planes, out_planes, stride=1):
|
||||
"""1x1 convolution"""
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
||||
|
||||
|
||||
class FixupBasicBlock(nn.Module):
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
||||
super(FixupBasicBlock, self).__init__()
|
||||
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
||||
self.bias1a = nn.Parameter(torch.zeros(1))
|
||||
self.conv1 = conv3x3(inplanes, planes, stride)
|
||||
self.bn1 = nn.BatchNorm2d(planes, affine=True)
|
||||
self.bias1b = nn.Parameter(torch.zeros(1))
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||||
self.bias2a = nn.Parameter(torch.zeros(1))
|
||||
self.conv2 = conv3x3(planes, planes)
|
||||
self.bn2 = nn.BatchNorm2d(planes, affine=True)
|
||||
self.scale = nn.Parameter(torch.ones(1))
|
||||
self.bias2b = nn.Parameter(torch.zeros(1))
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x + self.bias1a)
|
||||
out = self.lrelu(out + self.bias1b)
|
||||
|
||||
out = self.conv2(out + self.bias2a)
|
||||
out = out * self.scale + self.bias2b
|
||||
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x + self.bias1a)
|
||||
|
||||
out += identity
|
||||
out = self.lrelu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class FixupResNet(nn.Module):
|
||||
|
||||
def __init__(self, block, num_filters, layers, num_classes=1000):
|
||||
super(FixupResNet, self).__init__()
|
||||
self.num_layers = sum(layers)
|
||||
self.bias1 = nn.Parameter(torch.zeros(1))
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
||||
self.pixel_shuffle = nn.PixelShuffle(2)
|
||||
|
||||
# 4 input channels, including the noise.
|
||||
self.conv1 = nn.Conv2d(4, num_filters, kernel_size=7, stride=2, padding=3,
|
||||
bias=False)
|
||||
|
||||
self.inplanes = num_filters
|
||||
self.down_layer1 = self._make_layer(block, num_filters, layers[0])
|
||||
self.down_layer2 = self._make_layer(block, num_filters, layers[1], stride=2)
|
||||
self.down_layer3 = self._make_layer(block, num_filters * 4, layers[2], stride=2)
|
||||
self.down_layer4 = self._make_layer(block, num_filters * 16, layers[3], stride=2)
|
||||
|
||||
self.inplanes = num_filters * 4
|
||||
self.up_layer1 = self._make_layer(block, num_filters * 4, layers[4], stride=1)
|
||||
self.inplanes = num_filters
|
||||
self.up_layer2 = self._make_layer(block, num_filters, layers[5], stride=1)
|
||||
|
||||
self.defilter = nn.Conv2d(num_filters, 3, kernel_size=5, stride=1, padding=2, bias=False)
|
||||
|
||||
for m in self.modules():
|
||||
if isinstance(m, FixupBasicBlock):
|
||||
nn.init.normal_(m.conv1.weight, mean=0, std=np.sqrt(2 / (m.conv1.weight.shape[0] * np.prod(m.conv1.weight.shape[2:]))) * self.num_layers ** (-0.5))
|
||||
nn.init.constant_(m.conv2.weight, 0)
|
||||
if m.downsample is not None:
|
||||
nn.init.normal_(m.downsample.weight, mean=0, std=np.sqrt(2 / (m.downsample.weight.shape[0] * np.prod(m.downsample.weight.shape[2:]))))
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.constant_(m.weight, 0)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride=1):
|
||||
downsample = None
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
downsample = conv1x1(self.inplanes, planes * block.expansion, stride)
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.inplanes, planes, stride, downsample))
|
||||
self.inplanes = planes * block.expansion
|
||||
for _ in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
skip = x
|
||||
|
||||
# Noise has the same shape as the input with only one channel.
|
||||
rand_feature = torch.randn((x.shape[0], 1) + x.shape[2:], device=x.device, dtype=x.dtype)
|
||||
x = torch.cat([x, rand_feature], dim=1)
|
||||
|
||||
x = self.conv1(x)
|
||||
x = self.lrelu(x + self.bias1)
|
||||
|
||||
x = self.down_layer1(x)
|
||||
x = self.down_layer2(x)
|
||||
x = self.down_layer3(x)
|
||||
x = self.down_layer4(x)
|
||||
|
||||
x = self.pixel_shuffle(x)
|
||||
x = self.up_layer1(x)
|
||||
x = self.pixel_shuffle(x)
|
||||
x = self.up_layer2(x)
|
||||
|
||||
x = self.defilter(x)
|
||||
|
||||
base = F.interpolate(skip, scale_factor=.25, mode='bilinear', align_corners=False)
|
||||
return x + base
|
||||
|
||||
|
||||
def fixup_resnet34(num_filters, **kwargs):
|
||||
"""Constructs a Fixup-ResNet-34 model.
|
||||
"""
|
||||
model = FixupResNet(FixupBasicBlock, num_filters, [3, 4, 6, 3, 2, 2], **kwargs)
|
||||
return model
|
|
@ -1,122 +0,0 @@
|
|||
import functools
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import models.archs.arch_util as arch_util
|
||||
import torch
|
||||
|
||||
class ReduceAnnealer(nn.Module):
|
||||
'''
|
||||
Reduces an image dimensionality by half and performs a specified number of residual blocks on it before
|
||||
`annealing` the filter count to the same as the input filter count.
|
||||
|
||||
To reduce depth, accepts an interpolated "trunk" input which is summed with the output of the RA block before
|
||||
returning.
|
||||
|
||||
Returns a tuple in the forward pass. The first return is the annealed output. The second is the output before
|
||||
annealing (e.g. number_filters=input*4) which can be be used for upsampling.
|
||||
'''
|
||||
|
||||
def __init__(self, number_filters, residual_blocks):
|
||||
super(ReduceAnnealer, self).__init__()
|
||||
self.reducer = nn.Conv2d(number_filters, number_filters*4, 3, stride=2, padding=1, bias=True)
|
||||
self.res_trunk = arch_util.make_layer(functools.partial(arch_util.ResidualBlock, nf=number_filters*4), residual_blocks)
|
||||
self.annealer = nn.Conv2d(number_filters*4, number_filters, 3, stride=1, padding=1, bias=True)
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||||
arch_util.initialize_weights([self.reducer, self.annealer], .1)
|
||||
self.bn_reduce = nn.BatchNorm2d(number_filters*4, affine=True)
|
||||
self.bn_anneal = nn.BatchNorm2d(number_filters*4, affine=True)
|
||||
|
||||
def forward(self, x, interpolated_trunk):
|
||||
out = self.lrelu(self.bn_reduce(self.reducer(x)))
|
||||
out = self.lrelu(self.bn_anneal(self.res_trunk(out)))
|
||||
annealed = self.lrelu(self.annealer(out)) + interpolated_trunk
|
||||
return annealed, out
|
||||
|
||||
class Assembler(nn.Module):
|
||||
'''
|
||||
Upsamples a given input using PixelShuffle. Then upsamples this input further and adds in a residual raw input from
|
||||
a corresponding upstream ReduceAnnealer. Finally performs processing using ResNet blocks.
|
||||
'''
|
||||
def __init__(self, number_filters, residual_blocks):
|
||||
super(Assembler, self).__init__()
|
||||
self.pixel_shuffle = nn.PixelShuffle(2)
|
||||
self.upsampler = nn.Conv2d(number_filters, number_filters*4, 3, stride=1, padding=1, bias=True)
|
||||
self.res_trunk = arch_util.make_layer(functools.partial(arch_util.ResidualBlock, nf=number_filters*4), residual_blocks)
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||||
self.bn = nn.BatchNorm2d(number_filters*4, affine=True)
|
||||
self.bn_up = nn.BatchNorm2d(number_filters*4, affine=True)
|
||||
|
||||
def forward(self, input, skip_raw):
|
||||
out = self.pixel_shuffle(input)
|
||||
out = self.bn_up(self.upsampler(out)) + skip_raw
|
||||
out = self.lrelu(self.bn(self.res_trunk(out)))
|
||||
return out
|
||||
|
||||
class FlatProcessorNet(nn.Module):
|
||||
'''
|
||||
Specialized network that tries to perform a near-equal amount of processing on each of 5 downsampling steps. Image
|
||||
is then upsampled to a specified size with a similarly flat amount of processing.
|
||||
|
||||
This network automatically applies a noise vector on the inputs to provide entropy for processing.
|
||||
'''
|
||||
def __init__(self, in_nc=3, out_nc=3, nf=64, reduce_anneal_blocks=4, assembler_blocks=2, downscale=4):
|
||||
super(FlatProcessorNet, self).__init__()
|
||||
|
||||
assert downscale in [1, 2, 4], "Requested downscale not supported; %i" % (downscale, )
|
||||
self.downscale = downscale
|
||||
|
||||
# We will always apply a noise channel to the inputs, account for that here.
|
||||
in_nc += 1
|
||||
|
||||
# We need two layers to move the image into the filter space in which we will perform most of the work.
|
||||
self.conv_first = nn.Conv2d(in_nc, nf, 3, stride=1, padding=1, bias=True)
|
||||
self.conv_last = nn.Conv2d(nf*4, out_nc, 3, stride=1, padding=1, bias=True)
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||||
|
||||
# Torch modules need to have all submodules as explicit class members. So make those, then add them into an
|
||||
# array for easier logic in forward().
|
||||
self.ra1 = ReduceAnnealer(nf, reduce_anneal_blocks)
|
||||
self.ra2 = ReduceAnnealer(nf, reduce_anneal_blocks)
|
||||
self.ra3 = ReduceAnnealer(nf, reduce_anneal_blocks)
|
||||
self.ra4 = ReduceAnnealer(nf, reduce_anneal_blocks)
|
||||
self.ra5 = ReduceAnnealer(nf, reduce_anneal_blocks)
|
||||
self.reducers = [self.ra1, self.ra2, self.ra3, self.ra4, self.ra5]
|
||||
|
||||
# Produce assemblers for all possible downscale variants. Some may not be used.
|
||||
self.assembler1 = Assembler(nf, assembler_blocks)
|
||||
self.assembler2 = Assembler(nf, assembler_blocks)
|
||||
self.assembler3 = Assembler(nf, assembler_blocks)
|
||||
self.assembler4 = Assembler(nf, assembler_blocks)
|
||||
self.assemblers = [self.assembler1, self.assembler2, self.assembler3, self.assembler4]
|
||||
|
||||
# Initialization
|
||||
arch_util.initialize_weights([self.conv_first, self.conv_last], .1)
|
||||
|
||||
def forward(self, x):
|
||||
# Noise has the same shape as the input with only one channel.
|
||||
rand_feature = torch.randn((x.shape[0], 1) + x.shape[2:], device=x.device, dtype=x.dtype)
|
||||
out = torch.cat([x, rand_feature], dim=1)
|
||||
|
||||
out = self.lrelu(self.conv_first(out))
|
||||
features_trunk = out
|
||||
raw_values = []
|
||||
downsamples = 1
|
||||
for ra in self.reducers:
|
||||
downsamples *= 2
|
||||
interpolated = F.interpolate(features_trunk, scale_factor=1/downsamples, mode='bilinear', align_corners=False)
|
||||
out, raw = ra(out, interpolated)
|
||||
raw_values.append(raw)
|
||||
|
||||
i = -1
|
||||
out = raw_values[-1]
|
||||
while downsamples != self.downscale:
|
||||
out = self.assemblers[i](out, raw_values[i-1])
|
||||
i -= 1
|
||||
downsamples = int(downsamples / 2)
|
||||
|
||||
out = self.conv_last(out)
|
||||
|
||||
basis = x
|
||||
if downsamples != 1:
|
||||
basis = F.interpolate(x, scale_factor=1/downsamples, mode='bilinear', align_corners=False)
|
||||
return basis + out
|
|
@ -1,86 +0,0 @@
|
|||
import functools
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import models.archs.arch_util as arch_util
|
||||
import torch
|
||||
|
||||
|
||||
class HighToLowResNet(nn.Module):
|
||||
''' ResNet that applies a noise channel to the input, then downsamples it four times using strides. Finally, the
|
||||
input is upsampled to the desired downscale. Currently downscale=1,2,4 is supported.
|
||||
'''
|
||||
def __init__(self, in_nc=3, out_nc=3, nf=64, nb=16, downscale=4):
|
||||
super(HighToLowResNet, self).__init__()
|
||||
|
||||
assert downscale in [1, 2, 4], "Requested downscale not supported; %i" % (downscale, )
|
||||
self.downscale = downscale
|
||||
|
||||
# We will always apply a noise channel to the inputs, account for that here.
|
||||
in_nc += 1
|
||||
|
||||
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
||||
|
||||
# All sub-modules must be explicit members. Make it so. Then add them to a list.
|
||||
self.trunk1 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf), 4)
|
||||
self.trunk2 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf*2), 6)
|
||||
self.trunk3 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf*4), 12)
|
||||
self.trunk4 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf*8), 12)
|
||||
self.trunks = [self.trunk1, self.trunk2, self.trunk3, self.trunk4]
|
||||
self.trunkshapes = [4, 6, 12, 12]
|
||||
|
||||
self.r1 = nn.Conv2d(nf, nf*2, 3, stride=2, padding=1, bias=True)
|
||||
self.r2 = nn.Conv2d(nf*2, nf*4, 3, stride=2, padding=1, bias=True)
|
||||
self.r3 = nn.Conv2d(nf*4, nf*8, 3, stride=2, padding=1, bias=True)
|
||||
self.reducers = [self.r1, self.r2, self.r3]
|
||||
|
||||
self.pixel_shuffle = nn.PixelShuffle(2)
|
||||
|
||||
self.a1 = nn.Conv2d(nf*2, nf*4, 3, stride=1, padding=1, bias=True)
|
||||
self.a2 = nn.Conv2d(nf, nf*4, 3, stride=1, padding=1, bias=True)
|
||||
self.a3 = nn.Conv2d(nf, nf, 3, stride=1, padding=1, bias=True)
|
||||
self.assemblers = [self.a1, self.a2, self.a3]
|
||||
|
||||
if self.downscale == 1:
|
||||
nf_last = nf
|
||||
elif self.downscale == 2:
|
||||
nf_last = nf * 4
|
||||
elif self.downscale == 4:
|
||||
nf_last = nf * 4
|
||||
|
||||
self.conv_last = nn.Conv2d(nf_last, out_nc, 3, stride=1, padding=1, bias=True)
|
||||
|
||||
# activation function
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||||
|
||||
# initialization
|
||||
arch_util.initialize_weights([self.conv_first, self.conv_last] + self.reducers + self.assemblers,
|
||||
.1)
|
||||
|
||||
def forward(self, x):
|
||||
# Noise has the same shape as the input with only one channel.
|
||||
rand_feature = torch.randn((x.shape[0], 1) + x.shape[2:], device=x.device, dtype=x.dtype)
|
||||
out = torch.cat([x, rand_feature], dim=1)
|
||||
|
||||
out = self.lrelu(self.conv_first(out))
|
||||
skips = []
|
||||
for i in range(4):
|
||||
skips.append(out)
|
||||
out = self.trunks[i](out)
|
||||
if i < 3:
|
||||
out = self.lrelu(self.reducers[i](out))
|
||||
|
||||
target_width = x.shape[-1] / self.downscale
|
||||
i = 0
|
||||
while out.shape[-1] != target_width:
|
||||
out = self.pixel_shuffle(out)
|
||||
out = self.lrelu(self.assemblers[i](out))
|
||||
out = out + skips[-i-2]
|
||||
i += 1
|
||||
|
||||
# TODO: Figure out where this magic number '12' comes from and fix it.
|
||||
out = 12 * self.conv_last(out)
|
||||
if self.downscale == 1:
|
||||
base = x
|
||||
else:
|
||||
base = F.interpolate(x, scale_factor=1/self.downscale, mode='bilinear', align_corners=False)
|
||||
return out + base
|
|
@ -1,226 +0,0 @@
|
|||
import torch
|
||||
from torch import nn
|
||||
from models.archs.arch_util import ConvBnLelu, ConvBnRelu, MultiConvBlock
|
||||
from switched_conv import BareConvSwitch, compute_attention_specificity
|
||||
from switched_conv_util import save_attention_to_image
|
||||
from functools import partial
|
||||
import torch.nn.functional as F
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
class Switch(nn.Module):
|
||||
def __init__(self, transform_block, transform_count, init_temp=20, pass_chain_forward=False, add_scalable_noise_to_transforms=False):
|
||||
super(Switch, self).__init__()
|
||||
|
||||
self.transforms = nn.ModuleList([transform_block() for _ in range(transform_count)])
|
||||
self.add_noise = add_scalable_noise_to_transforms
|
||||
self.pass_chain_forward = pass_chain_forward
|
||||
|
||||
# And the switch itself, including learned scalars
|
||||
self.switch = BareConvSwitch(initial_temperature=init_temp)
|
||||
self.scale = nn.Parameter(torch.ones(1))
|
||||
self.bias = nn.Parameter(torch.zeros(1))
|
||||
|
||||
# x is the input fed to the transform blocks.
|
||||
# m is the output of the multiplexer which will be used to select from those transform blocks.
|
||||
# chain is a chain of shared processing outputs used by the individual transforms.
|
||||
def forward(self, x, m, chain):
|
||||
if self.pass_chain_forward:
|
||||
pcf = [t(x, chain) for t in self.transforms]
|
||||
xformed = [o[0] for o in pcf]
|
||||
atts = [o[1] for o in pcf]
|
||||
else:
|
||||
if self.add_noise:
|
||||
rand_feature = torch.randn_like(x)
|
||||
xformed = [t(x, rand_feature) for t in self.transforms]
|
||||
else:
|
||||
xformed = [t(x) for t in self.transforms]
|
||||
|
||||
# Interpolate the multiplexer across the entire shape of the image.
|
||||
m = F.interpolate(m, size=x.shape[2:], mode='nearest')
|
||||
|
||||
outputs, attention = self.switch(xformed, m, True)
|
||||
outputs = outputs * self.scale + self.bias
|
||||
|
||||
if self.pass_chain_forward:
|
||||
# Apply attention weights to collected [atts] and return the aggregate.
|
||||
atts = torch.stack(atts, dim=3)
|
||||
attention = atts * attention.unsqueeze(dim=-1)
|
||||
attention = torch.flatten(attention, 3)
|
||||
|
||||
return outputs, attention
|
||||
|
||||
def set_temperature(self, temp):
|
||||
self.switch.set_attention_temperature(temp)
|
||||
if self.pass_chain_forward:
|
||||
[t.set_temperature(temp) for t in self.transforms]
|
||||
|
||||
|
||||
# Convolutional image processing block that optionally reduces image size by a factor of 2 using stride and performs a
|
||||
# series of conv blocks on it
|
||||
class Processor(nn.Module):
|
||||
def __init__(self, base_filters, processing_depth, reduce=False):
|
||||
super(Processor, self).__init__()
|
||||
self.output_filter_count = base_filters * (2 if reduce else 1)
|
||||
self.pre = ConvBnRelu(base_filters, base_filters, kernel_size=3, bias=True)
|
||||
self.initial = ConvBnRelu(base_filters, self.output_filter_count, kernel_size=1, stride=2 if reduce else 1, bias=False)
|
||||
self.blocks = nn.Sequential(OrderedDict(
|
||||
[(str(i), ConvBnRelu(self.output_filter_count, self.output_filter_count, kernel_size=3, bias=False)) for i in range(processing_depth)]))
|
||||
|
||||
def forward(self, x):
|
||||
x = self.pre(x)
|
||||
x = self.initial(x)
|
||||
x = self.blocks(x)
|
||||
return (x - .39) / .58
|
||||
|
||||
|
||||
# Convolutional image processing block that constricts an input image with a large number of filters to a small number
|
||||
# of filters over a fixed number of layers.
|
||||
class Constrictor(nn.Module):
|
||||
def __init__(self, filters, output_filters):
|
||||
super(Constrictor, self).__init__()
|
||||
assert(filters > output_filters)
|
||||
gap = filters - output_filters
|
||||
gap_div_4 = int(gap / 4)
|
||||
self.cbl1 = ConvBnRelu(filters, filters - (gap_div_4 * 2), kernel_size=1, norm=True, bias=True)
|
||||
self.cbl2 = ConvBnRelu(filters - (gap_div_4 * 2), filters - (gap_div_4 * 3), kernel_size=1, norm=True, bias=False)
|
||||
self.cbl3 = ConvBnRelu(filters - (gap_div_4 * 3), output_filters, kernel_size=1, activation=False, norm=False, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.cbl1(x)
|
||||
x = self.cbl2(x)
|
||||
x = self.cbl3(x)
|
||||
return x / 2.67
|
||||
|
||||
|
||||
class RecursiveSwitchedTransform(nn.Module):
|
||||
def __init__(self, transform_filters, filters_count_list, nesting_depth, transforms_at_leaf,
|
||||
trans_kernel_size, trans_num_layers, trans_scale_init=1, initial_temp=20, add_scalable_noise_to_transforms=False):
|
||||
super(RecursiveSwitchedTransform, self).__init__()
|
||||
|
||||
self.depth = nesting_depth
|
||||
at_leaf = (self.depth == 0)
|
||||
if at_leaf:
|
||||
transform = partial(MultiConvBlock, transform_filters, transform_filters, transform_filters, kernel_size=trans_kernel_size, depth=trans_num_layers, scale_init=trans_scale_init)
|
||||
else:
|
||||
transform = partial(RecursiveSwitchedTransform, transform_filters, filters_count_list,
|
||||
nesting_depth - 1, transforms_at_leaf, trans_kernel_size, trans_num_layers, trans_scale_init, initial_temp, add_scalable_noise_to_transforms)
|
||||
selection_breadth = transforms_at_leaf if at_leaf else 2
|
||||
self.switch = Switch(transform, selection_breadth, initial_temp, pass_chain_forward=not at_leaf, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms)
|
||||
self.multiplexer = Constrictor(filters_count_list[self.depth], selection_breadth)
|
||||
|
||||
def forward(self, x, processing_trunk_chain):
|
||||
proc_out = processing_trunk_chain[self.depth]
|
||||
m = self.multiplexer(proc_out)
|
||||
return self.switch(x, m, processing_trunk_chain)
|
||||
|
||||
def set_temperature(self, temp):
|
||||
self.switch.set_temperature(temp)
|
||||
|
||||
|
||||
class NestedSwitchComputer(nn.Module):
|
||||
def __init__(self, transform_filters, switch_base_filters, num_switch_processing_layers, nesting_depth, transforms_at_leaf,
|
||||
trans_kernel_size, trans_num_layers, trans_scale_init, initial_temp=20, add_scalable_noise_to_transforms=False):
|
||||
super(NestedSwitchComputer, self).__init__()
|
||||
|
||||
processing_trunk = []
|
||||
filters = []
|
||||
current_filters = switch_base_filters
|
||||
reduce = False # Don't reduce the first layer, but reduce after that.
|
||||
for _ in range(nesting_depth):
|
||||
processing_trunk.append(Processor(current_filters, num_switch_processing_layers, reduce=reduce))
|
||||
current_filters = processing_trunk[-1].output_filter_count
|
||||
filters.append(current_filters)
|
||||
reduce = True
|
||||
|
||||
self.multiplexer_init_conv = ConvBnLelu(transform_filters, switch_base_filters, kernel_size=7, activation=False, norm=False)
|
||||
self.processing_trunk = nn.ModuleList(processing_trunk)
|
||||
self.switch = RecursiveSwitchedTransform(transform_filters, filters, nesting_depth-1, transforms_at_leaf, trans_kernel_size, trans_num_layers-1, trans_scale_init, initial_temp=initial_temp, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms)
|
||||
self.anneal = ConvBnLelu(transform_filters, transform_filters, kernel_size=1, norm=False)
|
||||
|
||||
def forward(self, x):
|
||||
feed_forward = x
|
||||
trunk = []
|
||||
trunk_input = self.multiplexer_init_conv(x)
|
||||
for m in self.processing_trunk:
|
||||
trunk_input = (m(trunk_input) - 3.3) / 12.5
|
||||
trunk.append(trunk_input)
|
||||
|
||||
self.trunk = trunk[-1]
|
||||
x, att = self.switch(x, trunk)
|
||||
x = x + feed_forward
|
||||
return feed_forward + self.anneal(x) / .86, att
|
||||
|
||||
def set_temperature(self, temp):
|
||||
self.switch.set_temperature(temp)
|
||||
|
||||
|
||||
class NestedSwitchedGenerator(nn.Module):
|
||||
def __init__(self, switch_filters, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes,
|
||||
trans_layers, transformation_filters, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1,
|
||||
heightened_final_step=50000, upsample_factor=1, add_scalable_noise_to_transforms=False):
|
||||
super(NestedSwitchedGenerator, self).__init__()
|
||||
self.initial_conv = ConvBnLelu(3, transformation_filters, kernel_size=7, activation=False, norm=False)
|
||||
self.proc_conv = ConvBnLelu(transformation_filters, transformation_filters, norm=False)
|
||||
self.final_conv = ConvBnLelu(transformation_filters, 3, kernel_size=1, activation=False, norm=False)
|
||||
|
||||
switches = []
|
||||
for sw_reduce, sw_proc, trans_count, kernel, layers in zip(switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers):
|
||||
switches.append(NestedSwitchComputer(transform_filters=transformation_filters, switch_base_filters=switch_filters, num_switch_processing_layers=sw_proc,
|
||||
nesting_depth=sw_reduce, transforms_at_leaf=trans_count, trans_kernel_size=kernel, trans_num_layers=layers,
|
||||
trans_scale_init=.2, initial_temp=initial_temp, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms))
|
||||
self.switches = nn.ModuleList(switches)
|
||||
|
||||
self.transformation_counts = trans_counts
|
||||
self.init_temperature = initial_temp
|
||||
self.final_temperature_step = final_temperature_step
|
||||
self.heightened_temp_min = heightened_temp_min
|
||||
self.heightened_final_step = heightened_final_step
|
||||
self.attentions = None
|
||||
self.upsample_factor = upsample_factor
|
||||
|
||||
def forward(self, x):
|
||||
x = self.initial_conv(x) / .2
|
||||
|
||||
self.attentions = []
|
||||
for i, sw in enumerate(self.switches):
|
||||
x, att = sw(x)
|
||||
self.attentions.append(att)
|
||||
|
||||
if self.upsample_factor > 1:
|
||||
x = F.interpolate(x, scale_factor=self.upsample_factor, mode="nearest")
|
||||
|
||||
x = self.proc_conv(x) / .85
|
||||
x = self.final_conv(x) / 4.6
|
||||
return x / 16,
|
||||
|
||||
def set_temperature(self, temp):
|
||||
[sw.set_temperature(temp) for sw in self.switches]
|
||||
|
||||
def update_for_step(self, step, experiments_path='.'):
|
||||
if self.attentions:
|
||||
temp = max(1, int(self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step))
|
||||
if temp == 1 and self.heightened_final_step and self.heightened_final_step != 1:
|
||||
# Once the temperature passes (1) it enters an inverted curve to match the linear curve from above.
|
||||
# without this, the attention specificity "spikes" incredibly fast in the last few iterations.
|
||||
h_steps_total = self.heightened_final_step - self.final_temperature_step
|
||||
h_steps_current = min(step - self.final_temperature_step, h_steps_total)
|
||||
# The "gap" will represent the steps that need to be traveled as a linear function.
|
||||
h_gap = 1 / self.heightened_temp_min
|
||||
temp = h_gap * h_steps_current / h_steps_total
|
||||
# Invert temperature to represent reality on this side of the curve
|
||||
temp = 1 / temp
|
||||
self.set_temperature(temp)
|
||||
if step % 50 == 0:
|
||||
[save_attention_to_image(experiments_path, self.attentions[i], self.transformation_counts[i], step, "a%i" % (i+1,)) for i in range(len(self.switches))]
|
||||
|
||||
def get_debug_values(self, step):
|
||||
temp = self.switches[0].switch.switch.switch.temperature
|
||||
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
||||
means = [i[0] for i in mean_hists]
|
||||
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
||||
val = {"switch_temperature": temp}
|
||||
for i in range(len(means)):
|
||||
val["switch_%i_specificity" % (i,)] = means[i]
|
||||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
Loading…
Reference in New Issue
Block a user