SPSR4
aka - return of the backbone! I'm tired of massively overparameterized generators with pile-of-shit multiplexers. Let's give this another try..
This commit is contained in:
parent
19896abaea
commit
4e44bca611
|
@ -5,7 +5,7 @@ import torch.nn.functional as F
|
|||
from models.archs import SPSR_util as B
|
||||
from .RRDBNet_arch import RRDB
|
||||
from models.archs.arch_util import ConvGnLelu, UpconvBlock, ConjoinBlock, ConvGnSilu, MultiConvBlock, ReferenceJoinBlock
|
||||
from models.archs.SwitchedResidualGenerator_arch import ConvBasisMultiplexer, ConfigurableSwitchComputer, ReferencingConvMultiplexer, ReferenceImageBranch, AdaInConvBlock, ProcessingBranchWithStochasticity
|
||||
from models.archs.SwitchedResidualGenerator_arch import ConvBasisMultiplexer, ConfigurableSwitchComputer, ReferencingConvMultiplexer, ReferenceImageBranch, AdaInConvBlock, ProcessingBranchWithStochasticity, EmbeddingMultiplexer
|
||||
from switched_conv_util import save_attention_to_image_rgb
|
||||
from switched_conv import compute_attention_specificity
|
||||
import functools
|
||||
|
@ -409,3 +409,134 @@ class SwitchedSpsrWithRef2(nn.Module):
|
|||
val["switch_%i_specificity" % (i,)] = means[i]
|
||||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
||||
|
||||
|
||||
class Spsr4(nn.Module):
|
||||
def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, init_temperature=10):
|
||||
super(Spsr4, self).__init__()
|
||||
n_upscale = int(math.log(upscale, 2))
|
||||
|
||||
# switch options
|
||||
transformation_filters = nf
|
||||
self.transformation_counts = xforms
|
||||
multiplx_fn = functools.partial(EmbeddingMultiplexer, transformation_filters)
|
||||
pretransform_fn = functools.partial(ConvGnLelu, transformation_filters, transformation_filters, norm=False, bias=False, weight_init_factor=.1)
|
||||
transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.5),
|
||||
transformation_filters, kernel_size=3, depth=3,
|
||||
weight_init_factor=.1)
|
||||
|
||||
# Feature branch
|
||||
self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False)
|
||||
self.noise_ref_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.1)
|
||||
self.sw1 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=self.transformation_counts, init_temp=init_temperature,
|
||||
add_scalable_noise_to_transforms=False)
|
||||
self.sw2 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=self.transformation_counts, init_temp=init_temperature,
|
||||
add_scalable_noise_to_transforms=False)
|
||||
self.feature_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=True, activation=False)
|
||||
self.feature_lr_conv2 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
|
||||
# Grad branch. Note - groupnorm on this branch is REALLY bad. Avoid it like the plague.
|
||||
self.get_g_nopadding = ImageGradientNoPadding()
|
||||
self.grad_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
self.noise_ref_join_grad = ReferenceJoinBlock(nf, residual_weight_init_factor=.1)
|
||||
self.grad_ref_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.3, final_norm=False)
|
||||
self.sw_grad = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=self.transformation_counts // 2, init_temp=init_temperature,
|
||||
add_scalable_noise_to_transforms=False)
|
||||
self.grad_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
|
||||
self.grad_lr_conv2 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
|
||||
self.upsample_grad = nn.Sequential(*[UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=True, bias=False) for _ in range(n_upscale)])
|
||||
self.grad_branch_output_conv = ConvGnLelu(nf, out_nc, kernel_size=1, norm=False, activation=False, bias=True)
|
||||
|
||||
# Join branch (grad+fea)
|
||||
self.noise_ref_join_conjoin = ReferenceJoinBlock(nf, residual_weight_init_factor=.1)
|
||||
self.conjoin_ref_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.3)
|
||||
self.conjoin_sw = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||
attention_norm=True,
|
||||
transform_count=self.transformation_counts, init_temp=init_temperature,
|
||||
add_scalable_noise_to_transforms=False)
|
||||
self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
|
||||
self.upsample = nn.Sequential(*[UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=True, bias=True) for _ in range(n_upscale)])
|
||||
self.final_hr_conv1 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False, bias=True)
|
||||
self.final_hr_conv2 = ConvGnLelu(nf, out_nc, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
self.switches = [self.sw1, self.sw2, self.sw_grad, self.conjoin_sw]
|
||||
self.attentions = None
|
||||
self.init_temperature = init_temperature
|
||||
self.final_temperature_step = 10000
|
||||
|
||||
def forward(self, x, embedding):
|
||||
noise_stds = []
|
||||
|
||||
x_grad = self.get_g_nopadding(x)
|
||||
|
||||
x = self.model_fea_conv(x)
|
||||
x1 = x
|
||||
x1, a1 = self.sw1(x1, True, identity=x, att_in=(x1, embedding))
|
||||
|
||||
x2 = x1
|
||||
x2, nstd = self.noise_ref_join(x2, torch.randn_like(x2))
|
||||
x2, a2 = self.sw2(x2, True, identity=x1, att_in=(x2, embedding))
|
||||
noise_stds.append(nstd)
|
||||
|
||||
x_grad = self.grad_conv(x_grad)
|
||||
x_grad_identity = x_grad
|
||||
x_grad, nstd = self.noise_ref_join_grad(x_grad, torch.randn_like(x_grad))
|
||||
x_grad, grad_fea_std = self.grad_ref_join(x_grad, x1)
|
||||
x_grad, a3 = self.sw_grad(x_grad, True, identity=x_grad_identity, att_in=(x_grad, embedding))
|
||||
x_grad = self.grad_lr_conv(x_grad)
|
||||
x_grad = self.grad_lr_conv2(x_grad)
|
||||
x_grad_out = self.upsample_grad(x_grad)
|
||||
x_grad_out = self.grad_branch_output_conv(x_grad_out)
|
||||
noise_stds.append(nstd)
|
||||
|
||||
x_out = x2
|
||||
x_out, nstd = self.noise_ref_join_conjoin(x_out, torch.randn_like(x_out))
|
||||
x_out, fea_grad_std = self.conjoin_ref_join(x_out, x_grad)
|
||||
x_out, a4 = self.conjoin_sw(x_out, True, identity=x2, att_in=(x_out, embedding))
|
||||
x_out = self.final_lr_conv(x_out)
|
||||
x_out = self.upsample(x_out)
|
||||
x_out = self.final_hr_conv1(x_out)
|
||||
x_out = self.final_hr_conv2(x_out)
|
||||
noise_stds.append(nstd)
|
||||
|
||||
self.attentions = [a1, a2, a3, a4]
|
||||
self.noise_stds = torch.stack(noise_stds).mean().detach().cpu()
|
||||
self.grad_fea_std = grad_fea_std.detach().cpu()
|
||||
self.fea_grad_std = fea_grad_std.detach().cpu()
|
||||
return x_grad_out, x_out, x_grad
|
||||
|
||||
def set_temperature(self, temp):
|
||||
[sw.set_temperature(temp) for sw in self.switches]
|
||||
|
||||
def update_for_step(self, step, experiments_path='.'):
|
||||
if self.attentions:
|
||||
temp = max(1, 1 + self.init_temperature *
|
||||
(self.final_temperature_step - step) / self.final_temperature_step)
|
||||
self.set_temperature(temp)
|
||||
if step % 200 == 0:
|
||||
output_path = os.path.join(experiments_path, "attention_maps", "a%i")
|
||||
prefix = "attention_map_%i_%%i.png" % (step,)
|
||||
[save_attention_to_image_rgb(output_path % (i,), self.attentions[i], self.transformation_counts, prefix, step) for i in range(len(self.attentions))]
|
||||
|
||||
def get_debug_values(self, step):
|
||||
temp = self.switches[0].switch.temperature
|
||||
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
||||
means = [i[0] for i in mean_hists]
|
||||
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
||||
val = {"switch_temperature": temp,
|
||||
"noise_branch_std_dev": self.noise_stds,
|
||||
"grad_branch_feat_intg_std_dev": self.grad_fea_std,
|
||||
"conjoin_branch_grad_intg_std_dev": self.fea_grad_std}
|
||||
for i in range(len(means)):
|
||||
val["switch_%i_specificity" % (i,)] = means[i]
|
||||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
||||
|
|
|
@ -8,6 +8,7 @@ from models.archs.arch_util import ConvBnLelu, ConvGnSilu, ExpansionBlock, Expan
|
|||
from switched_conv_util import save_attention_to_image_rgb
|
||||
import os
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
from models.archs.spinenet_arch import SpineNet
|
||||
|
||||
|
||||
# Set to true to relieve memory pressure by using torch.utils.checkpoint in several memory-critical locations.
|
||||
|
@ -335,3 +336,106 @@ class ConfigurableSwitchedResidualGenerator2(nn.Module):
|
|||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
||||
|
||||
|
||||
# This class encapsulates an encoder based on an object detection network backbone whose purpose is to generated a
|
||||
# structured embedding encoding what is in an image patch. This embedding can then be used to perform structured
|
||||
# alterations to the underlying image.
|
||||
#
|
||||
# Caveat: Since this uses a pre-defined (and potentially pre-trained) SpineNet backbone, it has a minimum-supported
|
||||
# image size, which is 128x128. In order to use 64x64 patches, you must set interpolate_first=True. though this will
|
||||
# degrade quality.
|
||||
class BackboneEncoder(nn.Module):
|
||||
def __init__(self, interpolate_first=True, pretrained_backbone=None):
|
||||
super(BackboneEncoder, self).__init__()
|
||||
self.interpolate_first = interpolate_first
|
||||
|
||||
# Uses dual spinenets, one for the input patch and the other for the reference image.
|
||||
self.patch_spine = SpineNet('49', in_channels=3, use_input_norm=True)
|
||||
self.ref_spine = SpineNet('49', in_channels=3, use_input_norm=True)
|
||||
|
||||
self.merge_process1 = ConvGnSilu(512, 512, kernel_size=1, activation=True, norm=False, bias=True)
|
||||
self.merge_process2 = ConvGnSilu(512, 384, kernel_size=1, activation=True, norm=True, bias=False)
|
||||
self.merge_process3 = ConvGnSilu(384, 256, kernel_size=1, activation=False, norm=False, bias=True)
|
||||
|
||||
if pretrained_backbone is not None:
|
||||
loaded_params = torch.load(pretrained_backbone)
|
||||
self.ref_spine.load_state_dict(loaded_params['state_dict'], strict=True)
|
||||
self.patch_spine.load_state_dict(loaded_params['state_dict'], strict=True)
|
||||
|
||||
# Returned embedding will have been reduced in size by a factor of 8 (4 if interpolate_first=True).
|
||||
# Output channels are always 256.
|
||||
# ex, 64x64 input with interpolate_first=True will result in tensor of shape [bx256x16x16]
|
||||
def forward(self, x, ref, ref_center_point):
|
||||
if self.interpolate_first:
|
||||
x = F.interpolate(x, scale_factor=2, mode="bicubic")
|
||||
# Don't interpolate ref - assume it is fed in at the proper resolution.
|
||||
# ref = F.interpolate(ref, scale_factor=2, mode="bicubic")
|
||||
|
||||
# [ref] will have a 'mask' channel which we cannot use with pretrained spinenet.
|
||||
ref = ref[:, :3, :, :]
|
||||
ref_emb = checkpoint(self.ref_spine, ref)[0]
|
||||
ref_code = gather_2d(ref_emb, ref_center_point // 8) # Divide by 8 to bring the center point to the correct location.
|
||||
|
||||
patch = checkpoint(self.ref_spine, x)[0]
|
||||
ref_code_expanded = ref_code.view(-1, 256, 1, 1).repeat(1, 1, patch.shape[2], patch.shape[3])
|
||||
combined = self.merge_process1(torch.cat([patch, ref_code_expanded], dim=1))
|
||||
combined = self.merge_process2(combined)
|
||||
combined = self.merge_process3(combined)
|
||||
|
||||
return combined
|
||||
|
||||
|
||||
# Mutiplexer that combines a structured embedding with a contextual switch input to guide alterations to that input.
|
||||
#
|
||||
# Implemented as basically a u-net which reduces the input into the same structural space as the embedding, combines the
|
||||
# two, then expands back into the original feature space.
|
||||
class EmbeddingMultiplexer(nn.Module):
|
||||
# Note: reductions=2 if the encoder is using interpolated input, otherwise reductions=3.
|
||||
def __init__(self, nf, multiplexer_channels, reductions=2):
|
||||
super(EmbeddingMultiplexer, self).__init__()
|
||||
self.embedding_process = MultiConvBlock(256, 256, 256, kernel_size=3, depth=3, norm=True)
|
||||
|
||||
self.filter_conv = ConvGnSilu(nf, nf, activation=True, norm=False, bias=True)
|
||||
self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(nf * 2 ** i) for i in range(reductions)])
|
||||
reduction_filters = nf * 2 ** reductions
|
||||
self.processing_blocks = nn.Sequential(
|
||||
ConvGnSilu(reduction_filters + 256, reduction_filters + 256, kernel_size=1, activation=True, norm=False, bias=True),
|
||||
ConvGnSilu(reduction_filters + 256, reduction_filters + 128, kernel_size=1, activation=True, norm=True, bias=False),
|
||||
ConvGnSilu(reduction_filters + 128, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False),
|
||||
ConvGnSilu(reduction_filters, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False))
|
||||
self.expansion_blocks = nn.ModuleList([ExpansionBlock2(reduction_filters // (2 ** i)) for i in range(reductions)])
|
||||
|
||||
gap = nf - multiplexer_channels
|
||||
cbl1_out = ((nf - (gap // 2)) // 4) * 4 # Must be multiples of 4 to use with group norm.
|
||||
self.cbl1 = ConvGnSilu(nf, cbl1_out, norm=True, bias=False, num_groups=4)
|
||||
cbl2_out = ((nf - (3 * gap // 4)) // 4) * 4
|
||||
self.cbl2 = ConvGnSilu(cbl1_out, cbl2_out, norm=True, bias=False, num_groups=4)
|
||||
self.cbl3 = ConvGnSilu(cbl2_out, multiplexer_channels, bias=True, norm=False)
|
||||
|
||||
def forward(self, x, embedding):
|
||||
x = self.filter_conv(x)
|
||||
embedding = self.embedding_process(embedding)
|
||||
|
||||
reduction_identities = []
|
||||
for b in self.reduction_blocks:
|
||||
reduction_identities.append(x)
|
||||
x = b(x)
|
||||
x = self.processing_blocks(torch.cat([x, embedding], dim=1))
|
||||
for i, b in enumerate(self.expansion_blocks):
|
||||
x = b(x, reduction_identities[-i - 1])
|
||||
|
||||
x = self.cbl1(x)
|
||||
x = self.cbl2(x)
|
||||
x = self.cbl3(x)
|
||||
return x
|
||||
|
||||
if __name__ == '__main__':
|
||||
bb = BackboneEncoder(64)
|
||||
emb = EmbeddingMultiplexer(64, 10)
|
||||
x = torch.randn(4,3,64,64)
|
||||
r = torch.randn(4,4,64,64)
|
||||
xu = torch.randn(4,64,64,64)
|
||||
cp = torch.zeros((4,2), dtype=torch.long)
|
||||
|
||||
b = bb(x, r, cp)
|
||||
emb(xu, b)
|
|
@ -365,4 +365,4 @@ class SpineNet(nn.Module):
|
|||
if spec.is_output:
|
||||
output_feat[spec.level] = target_feat
|
||||
|
||||
return [self.endpoint_convs[str(level)](output_feat[level]) for level in self.output_level]
|
||||
return tuple([self.endpoint_convs[str(level)](output_feat[level]) for level in self.output_level])
|
|
@ -51,6 +51,12 @@ def define_G(opt, net_key='network_G', scale=None):
|
|||
xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8
|
||||
netG = spsr.SwitchedSpsrWithRef2(in_nc=3, out_nc=3, nf=opt_net['nf'], xforms=xforms, upscale=opt_net['scale'],
|
||||
init_temperature=opt_net['temperature'] if 'temperature' in opt_net.keys() else 10)
|
||||
elif which_model == "spsr4":
|
||||
xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8
|
||||
netG = spsr.Spsr4(in_nc=3, out_nc=3, nf=opt_net['nf'], xforms=xforms, upscale=opt_net['scale'],
|
||||
init_temperature=opt_net['temperature'] if 'temperature' in opt_net.keys() else 10)
|
||||
elif which_model == "backbone_encoder":
|
||||
netG = SwitchedGen_arch.BackboneEncoder(pretrained_backbone=opt_net['pretrained_spinenet'])
|
||||
else:
|
||||
raise NotImplementedError('Generator model [{:s}] not recognized'.format(which_model))
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user