Don't compute attention statistics on multiple generator invocations of the same data

This commit is contained in:
James Betker 2020-10-05 00:34:29 -06:00
parent e760658fdb
commit 51044929af
3 changed files with 17 additions and 7 deletions

View File

@ -184,10 +184,15 @@ class SSGr1(nn.Module):
self.init_temperature = init_temperature
self.final_temperature_step = 10000
def forward(self, x, ref, ref_center):
def forward(self, x, ref, ref_center, save_attentions=True):
# The attention_maps debugger outputs <x>. Save that here.
self.lr = x.detach().cpu()
# If we're not saving attention, we also shouldn't be updating the attention norm. This is because the attention
# norm should only be getting updates with new data, not recurrent generator sampling.
for sw in self.switches:
sw.set_update_attention_norm(save_attentions)
x_grad = self.get_g_nopadding(x)
ref_code = checkpoint(self.reference_embedding, ref, ref_center)
ref_embedding = ref_code.view(-1, ref_code.shape[1], 1, 1).repeat(1, 1, x.shape[2] // 8, x.shape[3] // 8)
@ -206,7 +211,8 @@ class SSGr1(nn.Module):
x_out = checkpoint(self.upsample, x_out)
x_out = checkpoint(self.final_hr_conv2, x_out)
self.attentions = [a1, a3, a4]
if save_attentions:
self.attentions = [a1, a3, a4]
self.grad_fea_std = grad_fea_std.detach().cpu()
self.fea_grad_std = fea_grad_std.detach().cpu()
return x_grad_out, x_out, x_grad
@ -265,7 +271,7 @@ class StackedSwitchGenerator(nn.Module):
self.init_temperature = init_temperature
self.final_temperature_step = 10000
def forward(self, x, ref, ref_center):
def forward(self, x, ref, ref_center, save_attentions=True):
# The attention_maps debugger outputs <x>. Save that here.
self.lr = x.detach().cpu()
@ -280,7 +286,8 @@ class StackedSwitchGenerator(nn.Module):
x_out = checkpoint(self.upsample, x_out)
x_out = checkpoint(self.final_hr_conv2, x_out)
self.attentions = [a1, a3, a3]
if save_attentions:
self.attentions = [a1, a3, a3]
return x_out,
def set_temperature(self, temp):

View File

@ -104,7 +104,10 @@ class ConfigurableSwitchComputer(nn.Module):
# The post_switch_conv gets a low scale initially. The network can decide to magnify it (or not)
# depending on its needs.
self.psc_scale = nn.Parameter(torch.full((1,), float(.1)))
self.update_norm = True
def set_update_attention_norm(self, set_val):
self.update_norm = set_val
# Regarding inputs: it is acceptable to pass in a tuple/list as an input for (x), but the first element
# *must* be the actual parameter that gets fed through the network - it is assumed to be the identity.
@ -148,7 +151,7 @@ class ConfigurableSwitchComputer(nn.Module):
m = self.multiplexer(*att_in)
# It is assumed that [xformed] and [m] are collapsed into tensors at this point.
outputs, attention = self.switch(xformed, m, True)
outputs, attention = self.switch(xformed, m, True, self.update_norm)
outputs = identity + outputs * self.switch_scale * fixed_scale
outputs = outputs + self.post_switch_conv(outputs) * self.psc_scale * fixed_scale
if output_attention_weights:

View File

@ -4,6 +4,7 @@ from data.weight_scheduler import get_scheduler_for_opt
from utils.util import checkpoint
import torchvision.utils as utils
#from models.steps.recursive_gen_injectors import ImageFlowInjector
from models.steps.losses import extract_params_from_state
# Injectors are a way to sythesize data within a step that can then be used (and reused) by loss functions.
def create_injector(opt_inject, env):
@ -43,7 +44,6 @@ class Injector(torch.nn.Module):
def forward(self, state):
raise NotImplementedError
# Uses a generator to synthesize an image from [in] and injects the results into [out]
# Note that results are *not* detached.
class ImageGeneratorInjector(Injector):
@ -53,7 +53,7 @@ class ImageGeneratorInjector(Injector):
def forward(self, state):
gen = self.env['generators'][self.opt['generator']]
if isinstance(self.input, list):
params = [state[i] for i in self.input]
params = extract_params_from_state(self.input, state)
results = gen(*params)
else:
results = gen(state[self.input])