Get rid of excessive checkpointed disc params
This commit is contained in:
parent
6a0d5f4813
commit
552e70a032
|
@ -143,44 +143,44 @@ class Discriminator_VGG_128_GN_Checkpointed(nn.Module):
|
|||
def __init__(self, in_nc, nf, input_img_factor=1):
|
||||
super(Discriminator_VGG_128_GN_Checkpointed, self).__init__()
|
||||
# [64, 128, 128]
|
||||
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
||||
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
|
||||
self.bn0_1 = nn.GroupNorm(8, nf, affine=True)
|
||||
conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
||||
conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
|
||||
bn0_1 = nn.GroupNorm(8, nf, affine=True)
|
||||
# [64, 64, 64]
|
||||
self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
|
||||
self.bn1_0 = nn.GroupNorm(8, nf * 2, affine=True)
|
||||
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
|
||||
self.bn1_1 = nn.GroupNorm(8, nf * 2, affine=True)
|
||||
conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
|
||||
bn1_0 = nn.GroupNorm(8, nf * 2, affine=True)
|
||||
conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
|
||||
bn1_1 = nn.GroupNorm(8, nf * 2, affine=True)
|
||||
# [128, 32, 32]
|
||||
self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
|
||||
self.bn2_0 = nn.GroupNorm(8, nf * 4, affine=True)
|
||||
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
|
||||
self.bn2_1 = nn.GroupNorm(8, nf * 4, affine=True)
|
||||
conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
|
||||
bn2_0 = nn.GroupNorm(8, nf * 4, affine=True)
|
||||
conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
|
||||
bn2_1 = nn.GroupNorm(8, nf * 4, affine=True)
|
||||
# [256, 16, 16]
|
||||
self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
|
||||
self.bn3_0 = nn.GroupNorm(8, nf * 8, affine=True)
|
||||
self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
||||
self.bn3_1 = nn.GroupNorm(8, nf * 8, affine=True)
|
||||
conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
|
||||
bn3_0 = nn.GroupNorm(8, nf * 8, affine=True)
|
||||
conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
||||
bn3_1 = nn.GroupNorm(8, nf * 8, affine=True)
|
||||
# [512, 8, 8]
|
||||
self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
|
||||
self.bn4_0 = nn.GroupNorm(8, nf * 8, affine=True)
|
||||
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
||||
self.bn4_1 = nn.GroupNorm(8, nf * 8, affine=True)
|
||||
conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
|
||||
bn4_0 = nn.GroupNorm(8, nf * 8, affine=True)
|
||||
conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
||||
bn4_1 = nn.GroupNorm(8, nf * 8, affine=True)
|
||||
final_nf = nf * 8
|
||||
|
||||
# activation function
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
||||
|
||||
self.body = nn.Sequential(self.conv0_0, self.lrelu,
|
||||
self.conv0_1, self.bn0_1, self.lrelu,
|
||||
self.conv1_0, self.bn1_0, self.lrelu,
|
||||
self.conv1_1, self.bn1_1, self.lrelu,
|
||||
self.conv2_0, self.bn2_0, self.lrelu,
|
||||
self.conv2_1, self.bn2_1, self.lrelu,
|
||||
self.conv3_0, self.bn3_0, self.lrelu,
|
||||
self.conv3_1, self.bn3_1, self.lrelu,
|
||||
self.conv4_0, self.bn4_0, self.lrelu,
|
||||
self.conv4_1, self.bn4_1, self.lrelu)
|
||||
self.body = nn.Sequential(conv0_0, self.lrelu,
|
||||
conv0_1, bn0_1, self.lrelu,
|
||||
conv1_0, bn1_0, self.lrelu,
|
||||
conv1_1, bn1_1, self.lrelu,
|
||||
conv2_0, bn2_0, self.lrelu,
|
||||
conv2_1, bn2_1, self.lrelu,
|
||||
conv3_0, bn3_0, self.lrelu,
|
||||
conv3_1, bn3_1, self.lrelu,
|
||||
conv4_0, bn4_0, self.lrelu,
|
||||
conv4_1, bn4_1, self.lrelu)
|
||||
|
||||
self.linear1 = nn.Linear(int(final_nf * 4 * input_img_factor * 4 * input_img_factor), 100)
|
||||
self.linear2 = nn.Linear(100, 1)
|
||||
|
|
|
@ -67,10 +67,10 @@ class ProgressiveGeneratorInjector(Injector):
|
|||
if not isinstance(inputs, list):
|
||||
inputs = [inputs]
|
||||
if not isinstance(self.output, list):
|
||||
self.output = [self.output]
|
||||
output = [self.output]
|
||||
results = {} # A list of outputs produced by feeding each progressive lq input into the generator.
|
||||
results_hq = []
|
||||
for out_key in self.output:
|
||||
for out_key in output:
|
||||
results[out_key] = []
|
||||
|
||||
b, f, h, w = lq_inputs[:, 0].shape
|
||||
|
|
Loading…
Reference in New Issue
Block a user