diff --git a/codes/models/classifiers/cifar_resnet_branched.py b/codes/models/classifiers/cifar_resnet_branched.py index f5a53719..e314b22e 100644 --- a/codes/models/classifiers/cifar_resnet_branched.py +++ b/codes/models/classifiers/cifar_resnet_branched.py @@ -11,6 +11,7 @@ import torch import torch.nn as nn +from models.switched_conv.switched_conv_hard_routing import HardRoutingGate from trainer.networks import register_model @@ -111,7 +112,7 @@ class ResNetTail(nn.Module): class ResNet(nn.Module): - def __init__(self, block, num_block, num_classes=100, num_tails=8): + def __init__(self, block, num_block, num_classes=100, num_tails=8, dropout_rate=.2): super().__init__() self.in_channels = 32 self.conv1 = nn.Sequential( @@ -123,6 +124,9 @@ class ResNet(nn.Module): self.conv3_x = self._make_layer(block, 64, num_block[1], 2) self.tails = nn.ModuleList([ResNetTail(block, num_block, 256) for _ in range(num_tails)]) self.selector = ResNetTail(block, num_block, num_tails) + self.selector_gate = nn.Linear(256, 1) + self.gate = HardRoutingGate(num_tails, hard_en=True) + self.dropout_rate = dropout_rate self.final_linear = nn.Linear(256, num_classes) def _make_layer(self, block, out_channels, num_blocks, stride): @@ -144,8 +148,16 @@ class ResNet(nn.Module): keys = torch.stack(keys, dim=1) query = self.selector(output).unsqueeze(2) - attn = torch.nn.functional.softmax(query * keys, dim=1) - values = self.final_linear(attn * keys) + selector = self.selector_gate(query * keys).squeeze(-1) + if self.training and self.dropout_rate > 0: + bs, br = selector.shape + drop = torch.rand((bs, br), device=x.device) > self.dropout_rate + # Ensure that there is always at least one switch left un-dropped out + fix_blank = (drop.sum(dim=1, keepdim=True) == 0).repeat(1, br) + drop = drop.logical_or(fix_blank) + selector = drop * selector + selector = self.gate(selector) + values = self.final_linear(selector.unsqueeze(-1) * keys) return values.sum(dim=1) @@ -181,5 +193,8 @@ def resnet152(): if __name__ == '__main__': model = ResNet(BasicBlock, [2,2,2,2]) - print(model(torch.randn(2,3,32,32), torch.LongTensor([4,7])).shape) + v = model(torch.randn(2,3,32,32), torch.LongTensor([4,7])) + print(v.shape) + l = nn.MSELoss()(v, torch.randn_like(v)) + l.backward() diff --git a/codes/models/switched_conv/switched_conv_hard_routing.py b/codes/models/switched_conv/switched_conv_hard_routing.py index 5eecb313..73e9ad09 100644 --- a/codes/models/switched_conv/switched_conv_hard_routing.py +++ b/codes/models/switched_conv/switched_conv_hard_routing.py @@ -63,7 +63,9 @@ class SwitchedConvHardRoutingFunction(torch.autograd.Function): class RouteTop1(torch.autograd.Function): @staticmethod def forward(ctx, input): - mask = torch.nn.functional.one_hot(input.argmax(dim=1), num_classes=input.shape[1]).permute(0,3,1,2) + mask = torch.nn.functional.one_hot(input.argmax(dim=1), num_classes=input.shape[1]) + if len(input.shape) > 2: + mask = mask.permute(0, 3, 1, 2) # TODO: Make this more extensible. out = torch.ones_like(input) out[mask != 1] = 0 ctx.save_for_backward(mask, input.clone()) @@ -116,7 +118,8 @@ class SwitchNorm(nn.Module): self.register_buffer("accumulator", torch.zeros(accumulator_size, group_size)) def add_norm_to_buffer(self, x): - flat = x.sum(dim=[0, 2, 3]) + flatten_dims = [0] + [k+2 for k in range(len(x)-2)] + flat = x.sum(dim=flatten_dims) norm = flat / torch.mean(flat) self.accumulator[self.accumulator_index] = norm.detach().clone() @@ -126,9 +129,9 @@ class SwitchNorm(nn.Module): if self.accumulator_filled <= 0: self.accumulator_filled += 1 - # Input into forward is a switching tensor of shape (batch,groups,width,height) + # Input into forward is a switching tensor of shape (batch,groups,) def forward(self, x: torch.Tensor, update_attention_norm=True): - assert len(x.shape) == 4 + assert len(x.shape) >= 2 # Push the accumulator to the right device on the first iteration. if self.accumulator.device != x.device: @@ -148,7 +151,10 @@ class SwitchNorm(nn.Module): norm = torch.mean(self.accumulator, dim=0) else: norm = torch.ones(self.group_size, device=self.accumulator.device) - x = x / norm.view(1,-1,1,1) + + while len(x.shape) < len(norm.shape): + norm = norm.unsqueeze(-1) + x = x / norm # Need to re-normalize x so that the groups dimension sum to 1, just like when it was fed in. return x / x.sum(dim=1, keepdim=True)