Add script for extracting image tiles with reference images
This commit is contained in:
parent
9963b37200
commit
57fc3f490c
|
@ -9,6 +9,7 @@ import lmdb
|
|||
import pyarrow
|
||||
import torch.utils.data as data
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
|
||||
|
||||
def main():
|
||||
|
@ -19,15 +20,28 @@ def main():
|
|||
opt['compression_level'] = 90 # JPEG compression quality rating.
|
||||
# CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer
|
||||
# compression time. If read raw images during training, use 0 for faster IO speed.
|
||||
|
||||
if mode == 'single':
|
||||
opt['input_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\images'
|
||||
opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\lmdb_with_ref'
|
||||
opt['crop_sz'] = 512 # the size of each sub-image
|
||||
opt['step'] = 128 # step of the sliding crop window
|
||||
opt['dest'] = 'file'
|
||||
opt['input_folder'] = 'F:\\4k6k\\datasets\\ns_images\\vixen\\full_video_segments'
|
||||
opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\vixen\\full_video_with_refs'
|
||||
opt['crop_sz'] = [256, 512, 1024] # the size of each sub-image
|
||||
opt['step'] = 256 # step of the sliding crop window
|
||||
opt['thres_sz'] = 128 # size threshold
|
||||
opt['resize_final_img'] = .5
|
||||
opt['resize_final_img'] = [1, .5, .25]
|
||||
opt['only_resize'] = False
|
||||
extract_single(opt, split_img)
|
||||
|
||||
save_folder = opt['save_folder']
|
||||
if not osp.exists(save_folder):
|
||||
os.makedirs(save_folder)
|
||||
print('mkdir [{:s}] ...'.format(save_folder))
|
||||
|
||||
if opt['dest'] == 'lmdb':
|
||||
writer = LmdbWriter(save_folder)
|
||||
else:
|
||||
writer = FileWriter(save_folder)
|
||||
|
||||
extract_single(opt, writer, split_img)
|
||||
elif mode == 'pair':
|
||||
GT_folder = '../../datasets/div2k/DIV2K_train_HR'
|
||||
LR_folder = '../../datasets/div2k/DIV2K_train_LR_bicubic/X4'
|
||||
|
@ -91,7 +105,7 @@ class LmdbWriter:
|
|||
self.keys = []
|
||||
|
||||
# Writes the given reference image to the db and returns its ID.
|
||||
def write_reference_image(self, ref_img):
|
||||
def write_reference_image(self, ref_img, _):
|
||||
id = self.ref_id
|
||||
self.ref_id += 1
|
||||
self.write_image(id, ref_img[0], ref_img[1])
|
||||
|
@ -123,6 +137,48 @@ class LmdbWriter:
|
|||
self.db.close()
|
||||
|
||||
|
||||
class FileWriter:
|
||||
def __init__(self, folder):
|
||||
self.folder = folder
|
||||
self.next_unique_id = 0
|
||||
self.ref_center_points = {} # Maps ref_img basename to a dict of image IDs:center points
|
||||
self.ref_ids_to_names = {}
|
||||
|
||||
def get_next_unique_id(self):
|
||||
id = self.next_unique_id
|
||||
self.next_unique_id += 1
|
||||
return id
|
||||
|
||||
def save_image(self, ref_path, img_name, img):
|
||||
save_path = osp.join(self.folder, ref_path)
|
||||
os.makedirs(save_path, exist_ok=True)
|
||||
f = open(osp.join(save_path, img_name), "wb")
|
||||
f.write(img)
|
||||
f.close()
|
||||
|
||||
# Writes the given reference image to the db and returns its ID.
|
||||
def write_reference_image(self, ref_img, path):
|
||||
ref_img, _ = ref_img # Encoded with a center point, which is irrelevant for the reference image.
|
||||
img_name = osp.basename(path).replace(".jpg", "").replace(".png", "")
|
||||
self.ref_center_points[img_name] = {}
|
||||
self.save_image(img_name, "ref.jpg", ref_img)
|
||||
id = self.get_next_unique_id()
|
||||
self.ref_ids_to_names[id] = img_name
|
||||
return id
|
||||
|
||||
# Writes a tile image to the db given a reference image and returns its ID.
|
||||
def write_tile_image(self, ref_id, tile_image):
|
||||
id = self.get_next_unique_id()
|
||||
ref_name = self.ref_ids_to_names[ref_id]
|
||||
img, center = tile_image
|
||||
self.ref_center_points[ref_name][id] = center
|
||||
self.save_image(ref_name, "%08i.jpg" % (id,), img)
|
||||
return id
|
||||
|
||||
def close(self):
|
||||
for ref_name, cps in self.ref_center_points.items():
|
||||
torch.save(cps, osp.join(self.folder, ref_name, "centers.pt"))
|
||||
|
||||
class TiledDataset(data.Dataset):
|
||||
def __init__(self, opt, split_mode=False):
|
||||
self.split_mode = split_mode
|
||||
|
@ -136,16 +192,48 @@ class TiledDataset(data.Dataset):
|
|||
else:
|
||||
return self.get(index, False, False)
|
||||
|
||||
def get(self, index, split_mode, left_img):
|
||||
path = self.images[index]
|
||||
crop_sz = self.opt['crop_sz']
|
||||
def get_for_scale(self, img, split_mode, left_img, crop_sz, resize_factor):
|
||||
step = self.opt['step']
|
||||
thres_sz = self.opt['thres_sz']
|
||||
only_resize = self.opt['only_resize']
|
||||
|
||||
h, w, c = img.shape
|
||||
if split_mode:
|
||||
w = w/2
|
||||
|
||||
h_space = np.arange(0, h - crop_sz + 1, step)
|
||||
if h - (h_space[-1] + crop_sz) > thres_sz:
|
||||
h_space = np.append(h_space, h - crop_sz)
|
||||
w_space = np.arange(0, w - crop_sz + 1, step)
|
||||
if w - (w_space[-1] + crop_sz) > thres_sz:
|
||||
w_space = np.append(w_space, w - crop_sz)
|
||||
|
||||
index = 0
|
||||
tile_dim = int(crop_sz * resize_factor)
|
||||
dsize = (tile_dim, tile_dim)
|
||||
results = []
|
||||
for x in h_space:
|
||||
for y in w_space:
|
||||
index += 1
|
||||
crop_img = img[x:x + crop_sz, y:y + crop_sz, :]
|
||||
center_point = (x + crop_sz // 2, y + crop_sz // 2)
|
||||
crop_img = np.ascontiguousarray(crop_img)
|
||||
if 'resize_final_img' in self.opt.keys():
|
||||
# Resize too.
|
||||
center_point = (int(center_point[0] * resize_factor), int(center_point[1] * resize_factor))
|
||||
crop_img = cv2.resize(crop_img, dsize, interpolation=cv2.INTER_AREA)
|
||||
success, buffer = cv2.imencode(".jpg", crop_img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']])
|
||||
assert success
|
||||
results.append((buffer, center_point))
|
||||
return results
|
||||
|
||||
def get(self, index, split_mode, left_img):
|
||||
path = self.images[index]
|
||||
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
|
||||
|
||||
# We must convert the image into a square. Crop the image so that only the center is left, since this is often
|
||||
# the most salient part of the image.
|
||||
if len(img.shape) == 2: # Greyscale not supported.
|
||||
return None
|
||||
h, w, c = img.shape
|
||||
dim = min(h, w)
|
||||
img = img[(h - dim) // 2:dim + (h - dim) // 2, (w - dim) // 2:dim + (w - dim) // 2, :]
|
||||
|
@ -153,7 +241,7 @@ class TiledDataset(data.Dataset):
|
|||
h, w, c = img.shape
|
||||
# Uncomment to filter any image that doesnt meet a threshold size.
|
||||
if min(h,w) < 1024:
|
||||
return
|
||||
return None
|
||||
left = 0
|
||||
right = w
|
||||
if split_mode:
|
||||
|
@ -163,48 +251,20 @@ class TiledDataset(data.Dataset):
|
|||
else:
|
||||
left = int(w/2)
|
||||
right = w
|
||||
w = int(w/2)
|
||||
img = img[:, left:right]
|
||||
|
||||
h_space = np.arange(0, h - crop_sz + 1, step)
|
||||
if h - (h_space[-1] + crop_sz) > thres_sz:
|
||||
h_space = np.append(h_space, h - crop_sz)
|
||||
w_space = np.arange(0, w - crop_sz + 1, step)
|
||||
if w - (w_space[-1] + crop_sz) > thres_sz:
|
||||
w_space = np.append(w_space, w - crop_sz)
|
||||
tile_dim = int(self.opt['crop_sz'][0] * self.opt['resize_final_img'][0])
|
||||
dsize = (tile_dim, tile_dim)
|
||||
|
||||
dsize = None
|
||||
if only_resize:
|
||||
dsize = (crop_sz, crop_sz)
|
||||
if h < w:
|
||||
h_space = [0]
|
||||
w_space = [(w - h) // 2]
|
||||
crop_sz = h
|
||||
else:
|
||||
h_space = [(h - w) // 2]
|
||||
w_space = [0]
|
||||
crop_sz = w
|
||||
# Reference image should always be first entry in results.
|
||||
ref_img = cv2.resize(img, dsize, interpolation=cv2.INTER_AREA)
|
||||
success, ref_buffer = cv2.imencode(".jpg", ref_img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']])
|
||||
assert success
|
||||
results = [(ref_buffer, (-1,-1))]
|
||||
|
||||
index = 0
|
||||
resize_factor = self.opt['resize_final_img'] if 'resize_final_img' in self.opt.keys() else 1
|
||||
dsize = (int(crop_sz * resize_factor), int(crop_sz * resize_factor))
|
||||
# Reference image should always be first.
|
||||
results = [(cv2.resize(img, dsize, interpolation=cv2.INTER_AREA), (-1,-1))]
|
||||
for x in h_space:
|
||||
for y in w_space:
|
||||
index += 1
|
||||
crop_img = img[x:x + crop_sz, y:y + crop_sz, :]
|
||||
center_point = (x + crop_sz // 2, y + crop_sz // 2)
|
||||
crop_img = np.ascontiguousarray(crop_img)
|
||||
if 'resize_final_img' in self.opt.keys():
|
||||
# Resize too.
|
||||
resize_factor = self.opt['resize_final_img']
|
||||
center_point = (int(center_point[0] * resize_factor), int(center_point[1] * resize_factor))
|
||||
crop_img = cv2.resize(crop_img, dsize, interpolation=cv2.INTER_AREA)
|
||||
success, buffer = cv2.imencode(".jpg", crop_img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']])
|
||||
assert success
|
||||
results.append((buffer, center_point))
|
||||
return results
|
||||
for crop_sz, resize_factor in zip(self.opt['crop_sz'], self.opt['resize_final_img']):
|
||||
results.extend(self.get_for_scale(img, split_mode, left_img, crop_sz, resize_factor))
|
||||
return results, path
|
||||
|
||||
def __len__(self):
|
||||
return len(self.images)
|
||||
|
@ -213,23 +273,20 @@ class TiledDataset(data.Dataset):
|
|||
def identity(x):
|
||||
return x
|
||||
|
||||
def extract_single(opt, split_img=False):
|
||||
save_folder = opt['save_folder']
|
||||
if not osp.exists(save_folder):
|
||||
os.makedirs(save_folder)
|
||||
print('mkdir [{:s}] ...'.format(save_folder))
|
||||
lmdb = LmdbWriter(save_folder)
|
||||
|
||||
def extract_single(opt, writer, split_img=False):
|
||||
dataset = TiledDataset(opt, split_img)
|
||||
dataloader = data.DataLoader(dataset, num_workers=opt['n_thread'], collate_fn=identity)
|
||||
tq = tqdm(dataloader)
|
||||
for imgs in tq:
|
||||
if imgs is None or imgs[0] is None:
|
||||
continue
|
||||
imgs, path = imgs[0]
|
||||
if imgs is None or len(imgs) <= 1:
|
||||
continue
|
||||
ref_id = lmdb.write_reference_image(imgs[0])
|
||||
ref_id = writer.write_reference_image(imgs[0], path)
|
||||
for tile in imgs[1:]:
|
||||
lmdb.write_tile_image(ref_id, tile)
|
||||
lmdb.close()
|
||||
writer.write_tile_image(ref_id, tile)
|
||||
writer.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
Loading…
Reference in New Issue
Block a user