LR switched SPSR arch
This variant doesn't do conv processing at HR, which should save a ton of memory in inference. Lets see how it works.
This commit is contained in:
parent
4e972144ae
commit
59aba1daa7
|
@ -546,3 +546,129 @@ class SwitchedSpsr(nn.Module):
|
||||||
val["switch_%i_specificity" % (i,)] = means[i]
|
val["switch_%i_specificity" % (i,)] = means[i]
|
||||||
val["switch_%i_histogram" % (i,)] = hists[i]
|
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||||
return val
|
return val
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class SwitchedSpsrLr(nn.Module):
|
||||||
|
def __init__(self, in_nc, out_nc, nf, upscale=4):
|
||||||
|
super(SwitchedSpsrLr, self).__init__()
|
||||||
|
n_upscale = int(math.log(upscale, 2))
|
||||||
|
|
||||||
|
# switch options
|
||||||
|
transformation_filters = nf
|
||||||
|
switch_filters = nf
|
||||||
|
switch_reductions = 3
|
||||||
|
switch_processing_layers = 2
|
||||||
|
self.transformation_counts = 8
|
||||||
|
multiplx_fn = functools.partial(ConvBasisMultiplexer, transformation_filters, switch_filters, switch_reductions,
|
||||||
|
switch_processing_layers, self.transformation_counts)
|
||||||
|
pretransform_fn = functools.partial(ConvGnLelu, transformation_filters, transformation_filters, norm=False, bias=False, weight_init_factor=.1)
|
||||||
|
transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.5),
|
||||||
|
transformation_filters, kernel_size=3, depth=3,
|
||||||
|
weight_init_factor=.1)
|
||||||
|
|
||||||
|
# Feature branch
|
||||||
|
self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False)
|
||||||
|
self.sw1 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||||
|
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||||
|
attention_norm=True,
|
||||||
|
transform_count=self.transformation_counts, init_temp=10,
|
||||||
|
add_scalable_noise_to_transforms=True)
|
||||||
|
self.sw2 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||||
|
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||||
|
attention_norm=True,
|
||||||
|
transform_count=self.transformation_counts, init_temp=10,
|
||||||
|
add_scalable_noise_to_transforms=True)
|
||||||
|
self.feature_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False)
|
||||||
|
self.feature_hr_conv1 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=False)
|
||||||
|
self.feature_hr_conv2 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||||
|
|
||||||
|
# Grad branch
|
||||||
|
self.get_g_nopadding = ImageGradientNoPadding()
|
||||||
|
self.b_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||||
|
self.sw_grad = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||||
|
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||||
|
attention_norm=True,
|
||||||
|
transform_count=self.transformation_counts, init_temp=10,
|
||||||
|
add_scalable_noise_to_transforms=True)
|
||||||
|
# Upsampling
|
||||||
|
self.grad_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=False)
|
||||||
|
grad_hr_conv1 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=False)
|
||||||
|
grad_hr_conv2 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||||
|
self.branch_upsample = B.sequential(grad_hr_conv1, grad_hr_conv2)
|
||||||
|
# Conv used to output grad branch shortcut.
|
||||||
|
self.grad_branch_output_conv = ConvGnLelu(nf, out_nc, kernel_size=1, norm=False, activation=False, bias=False)
|
||||||
|
|
||||||
|
# Conjoin branch.
|
||||||
|
# Note: "_branch_pretrain" is a special tag used to denote parameters that get pretrained before the rest.
|
||||||
|
transform_fn_cat = functools.partial(MultiConvBlock, transformation_filters * 2, int(transformation_filters * 1.5),
|
||||||
|
transformation_filters, kernel_size=3, depth=4,
|
||||||
|
weight_init_factor=.1)
|
||||||
|
pretransform_fn_cat = functools.partial(ConvGnLelu, transformation_filters * 2, transformation_filters * 2, norm=False, bias=False, weight_init_factor=.1)
|
||||||
|
self._branch_pretrain_sw = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||||
|
pre_transform_block=pretransform_fn_cat, transform_block=transform_fn_cat,
|
||||||
|
attention_norm=True,
|
||||||
|
transform_count=self.transformation_counts, init_temp=10,
|
||||||
|
add_scalable_noise_to_transforms=True)
|
||||||
|
self.upsample = nn.Sequential(*[UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False) for _ in range(n_upscale)])
|
||||||
|
self.upsample_grad = nn.Sequential(*[UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False) for _ in range(n_upscale)])
|
||||||
|
self._branch_pretrain_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False)
|
||||||
|
self._branch_pretrain_HR_conv0 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=False)
|
||||||
|
self._branch_pretrain_HR_conv1 = ConvGnLelu(nf, out_nc, kernel_size=3, norm=False, activation=False, bias=False)
|
||||||
|
self.switches = [self.sw1, self.sw2, self.sw_grad, self._branch_pretrain_sw]
|
||||||
|
self.attentions = None
|
||||||
|
self.init_temperature = 10
|
||||||
|
self.final_temperature_step = 10000
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x_grad = self.get_g_nopadding(x)
|
||||||
|
x = self.model_fea_conv(x)
|
||||||
|
|
||||||
|
x1, a1 = self.sw1(x, True)
|
||||||
|
x2, a2 = self.sw2(x1, True)
|
||||||
|
x_fea = self.feature_lr_conv(x2)
|
||||||
|
x_fea = self.feature_hr_conv1(x_fea)
|
||||||
|
x_fea = self.feature_hr_conv2(x_fea)
|
||||||
|
|
||||||
|
x_b_fea = self.b_fea_conv(x_grad)
|
||||||
|
x_grad, a3 = self.sw_grad(x_b_fea, att_in=x1, output_attention_weights=True)
|
||||||
|
x_grad = self.grad_lr_conv(x_grad)
|
||||||
|
x_grad = self.branch_upsample(x_grad)
|
||||||
|
x_out_branch = self.upsample_grad(x_grad)
|
||||||
|
x_out_branch = self.grad_branch_output_conv(x_out_branch)
|
||||||
|
|
||||||
|
x__branch_pretrain_cat = torch.cat([x_grad, x_fea], dim=1)
|
||||||
|
x__branch_pretrain_cat, a4 = self._branch_pretrain_sw(x__branch_pretrain_cat, att_in=x_fea, identity=x_fea, output_attention_weights=True)
|
||||||
|
x_out = self._branch_pretrain_lr_conv(x__branch_pretrain_cat)
|
||||||
|
x_out = self.upsample(x_out)
|
||||||
|
x_out = self._branch_pretrain_HR_conv0(x_out)
|
||||||
|
x_out = self._branch_pretrain_HR_conv1(x_out)
|
||||||
|
|
||||||
|
self.attentions = [a1, a2, a3, a4]
|
||||||
|
|
||||||
|
return x_out_branch, x_out, x_grad
|
||||||
|
|
||||||
|
def set_temperature(self, temp):
|
||||||
|
[sw.set_temperature(temp) for sw in self.switches]
|
||||||
|
|
||||||
|
def update_for_step(self, step, experiments_path='.'):
|
||||||
|
if self.attentions:
|
||||||
|
temp = max(1, 1 + self.init_temperature *
|
||||||
|
(self.final_temperature_step - step) / self.final_temperature_step)
|
||||||
|
self.set_temperature(temp)
|
||||||
|
if step % 10 == 0:
|
||||||
|
output_path = os.path.join(experiments_path, "attention_maps", "a%i")
|
||||||
|
prefix = "attention_map_%i_%%i.png" % (step,)
|
||||||
|
[save_attention_to_image_rgb(output_path % (i,), self.attentions[i], self.transformation_counts, prefix, step) for i in range(len(self.attentions))]
|
||||||
|
|
||||||
|
def get_debug_values(self, step):
|
||||||
|
temp = self.switches[0].switch.temperature
|
||||||
|
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
||||||
|
means = [i[0] for i in mean_hists]
|
||||||
|
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
||||||
|
val = {"switch_temperature": temp}
|
||||||
|
for i in range(len(means)):
|
||||||
|
val["switch_%i_specificity" % (i,)] = means[i]
|
||||||
|
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||||
|
return val
|
||||||
|
|
|
@ -134,11 +134,13 @@ class ConfigurableSwitchComputer(nn.Module):
|
||||||
# depending on its needs.
|
# depending on its needs.
|
||||||
self.psc_scale = nn.Parameter(torch.full((1,), float(.1)))
|
self.psc_scale = nn.Parameter(torch.full((1,), float(.1)))
|
||||||
|
|
||||||
def forward(self, x, output_attention_weights=False, att_in=None, fixed_scale=1):
|
def forward(self, x, output_attention_weights=False, identity=None, att_in=None, fixed_scale=1):
|
||||||
if att_in is None:
|
if att_in is None:
|
||||||
att_in = x
|
att_in = x
|
||||||
|
|
||||||
identity = x
|
if identity is None:
|
||||||
|
identity = x
|
||||||
|
|
||||||
if self.add_noise:
|
if self.add_noise:
|
||||||
rand_feature = torch.randn_like(x) * self.noise_scale
|
rand_feature = torch.randn_like(x) * self.noise_scale
|
||||||
x = x + rand_feature
|
x = x + rand_feature
|
||||||
|
|
|
@ -113,6 +113,8 @@ def define_G(opt, net_key='network_G'):
|
||||||
nb=opt_net['nb'], upscale=opt_net['scale'])
|
nb=opt_net['nb'], upscale=opt_net['scale'])
|
||||||
elif which_model == "spsr_switched":
|
elif which_model == "spsr_switched":
|
||||||
netG = spsr.SwitchedSpsr(in_nc=3, out_nc=3, nf=opt_net['nf'], upscale=opt_net['scale'])
|
netG = spsr.SwitchedSpsr(in_nc=3, out_nc=3, nf=opt_net['nf'], upscale=opt_net['scale'])
|
||||||
|
elif which_model == "spsr_switched_lr":
|
||||||
|
netG = spsr.SwitchedSpsrLr(in_nc=3, out_nc=3, nf=opt_net['nf'], upscale=opt_net['scale'])
|
||||||
|
|
||||||
# image corruption
|
# image corruption
|
||||||
elif which_model == 'HighToLowResNet':
|
elif which_model == 'HighToLowResNet':
|
||||||
|
|
Loading…
Reference in New Issue
Block a user