More mods to accomodate new dataset

This commit is contained in:
James Betker 2020-09-25 22:45:57 -06:00
parent 254cb1e915
commit 5a27187c59
7 changed files with 19 additions and 8 deletions

View File

@ -8,7 +8,7 @@ class ChunkWithReference:
def __init__(self, opt, path): def __init__(self, opt, path):
self.reload(opt) self.reload(opt)
self.path = path.path self.path = path.path
self.tiles, _ = util.get_image_paths('img', path) self.tiles, _ = util.get_image_paths('img', self.path)
self.centers = None self.centers = None
def reload(self, opt): def reload(self, opt):

View File

@ -27,10 +27,10 @@ class ImageCorruptor:
corrupted_imgs = [] corrupted_imgs = []
for img in imgs: for img in imgs:
for aug in self.fixed_corruptions:
img = self.apply_corruption(img, aug, rand_int_f)
for aug in augmentations: for aug in augmentations:
img = self.apply_corruption(img, aug, rand_int_a) img = self.apply_corruption(img, aug, rand_int_a)
for aug in self.fixed_corruptions:
img = self.apply_corruption(img, aug, rand_int_f)
corrupted_imgs.append(img) corrupted_imgs.append(img)
return corrupted_imgs return corrupted_imgs
@ -81,7 +81,7 @@ class ImageCorruptor:
img += np.random.randn() * noise_intensity img += np.random.randn() * noise_intensity
elif 'jpeg' in aug: elif 'jpeg' in aug:
# JPEG compression # JPEG compression
qf = (rand_int % 20 + 10) # Between 10-30 qf = (rand_int % 20 + 5) # Between 5-25
# cv2's jpeg compression is "odd". It introduces artifacts. Use PIL instead. # cv2's jpeg compression is "odd". It introduces artifacts. Use PIL instead.
img = (img * 255).astype(np.uint8) img = (img * 255).astype(np.uint8)
img = Image.fromarray(img) img = Image.fromarray(img)

View File

@ -39,6 +39,13 @@ class SingleImageDataset(data.Dataset):
c.reload(opt) c.reload(opt)
else: else:
chunks = [ChunkWithReference(opt, d) for d in os.scandir(path) if d.is_dir()] chunks = [ChunkWithReference(opt, d) for d in os.scandir(path) if d.is_dir()]
# Prune out chunks that have no images
res = []
for c in chunks:
if len(c) != 0:
res.append(c)
chunks = res
# Save to a cache.
torch.save(chunks, cache_path) torch.save(chunks, cache_path)
for w in range(weight): for w in range(weight):
self.chunks.extend(chunks) self.chunks.extend(chunks)

View File

@ -28,7 +28,8 @@ def _get_paths_from_images(path):
if is_image_file(fname) and 'ref.jpg' not in fname: if is_image_file(fname) and 'ref.jpg' not in fname:
img_path = os.path.join(dirpath, fname) img_path = os.path.join(dirpath, fname)
images.append(img_path) images.append(img_path)
assert images, '{:s} has no valid image file'.format(path) if not images:
print("Warning: {:s} has no valid image file".format(path))
return images return images

View File

@ -677,14 +677,14 @@ class Spsr4(nn.Module):
class Spsr5(nn.Module): class Spsr5(nn.Module):
def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, init_temperature=10): def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, multiplexer_reductions=2, init_temperature=10):
super(Spsr5, self).__init__() super(Spsr5, self).__init__()
n_upscale = int(math.log(upscale, 2)) n_upscale = int(math.log(upscale, 2))
# switch options # switch options
transformation_filters = nf transformation_filters = nf
self.transformation_counts = xforms self.transformation_counts = xforms
multiplx_fn = functools.partial(QueryKeyMultiplexer, transformation_filters) multiplx_fn = functools.partial(QueryKeyMultiplexer, transformation_filters, reductions=multiplexer_reductions)
pretransform_fn = functools.partial(ConvGnLelu, transformation_filters, transformation_filters, norm=False, bias=False, weight_init_factor=.1) pretransform_fn = functools.partial(ConvGnLelu, transformation_filters, transformation_filters, norm=False, bias=False, weight_init_factor=.1)
transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.5), transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.5),
transformation_filters, kernel_size=3, depth=3, transformation_filters, kernel_size=3, depth=3,

View File

@ -413,7 +413,7 @@ class BackboneEncoderNoRef(nn.Module):
class BackboneSpinenetNoHead(nn.Module): class BackboneSpinenetNoHead(nn.Module):
def __init__(self): def __init__(self):
super(BackboneSpinenetNoHead, self).__init__() super(BackboneSpinenetNoHead, self).__init__()
self.patch_spine = SpineNet('49', in_channels=3, use_input_norm=True) self.patch_spine = SpineNet('49', in_channels=3, use_input_norm=True, double_reduce_early=False)
def forward(self, x): def forward(self, x):
patch = checkpoint(self.patch_spine, x)[0] patch = checkpoint(self.patch_spine, x)[0]

View File

@ -64,6 +64,7 @@ def define_G(opt, net_key='network_G', scale=None):
elif which_model == "spsr5": elif which_model == "spsr5":
xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8 xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8
netG = spsr.Spsr5(in_nc=3, out_nc=3, nf=opt_net['nf'], xforms=xforms, upscale=opt_net['scale'], netG = spsr.Spsr5(in_nc=3, out_nc=3, nf=opt_net['nf'], xforms=xforms, upscale=opt_net['scale'],
multiplexer_reductions=opt_net['multiplexer_reductions'] if 'multiplexer_reductions' in opt_net.keys() else 2,
init_temperature=opt_net['temperature'] if 'temperature' in opt_net.keys() else 10) init_temperature=opt_net['temperature'] if 'temperature' in opt_net.keys() else 10)
elif which_model == "ssgr1": elif which_model == "ssgr1":
xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8 xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8
@ -81,6 +82,8 @@ def define_G(opt, net_key='network_G', scale=None):
netG = SwitchedGen_arch.BackboneEncoder(pretrained_backbone=opt_net['pretrained_spinenet']) netG = SwitchedGen_arch.BackboneEncoder(pretrained_backbone=opt_net['pretrained_spinenet'])
elif which_model == "backbone_encoder_no_ref": elif which_model == "backbone_encoder_no_ref":
netG = SwitchedGen_arch.BackboneEncoderNoRef(pretrained_backbone=opt_net['pretrained_spinenet']) netG = SwitchedGen_arch.BackboneEncoderNoRef(pretrained_backbone=opt_net['pretrained_spinenet'])
elif which_model == "backbone_encoder_no_head":
netG = SwitchedGen_arch.BackboneSpinenetNoHead()
elif which_model == "backbone_resnet": elif which_model == "backbone_resnet":
netG = SwitchedGen_arch.BackboneResnet() netG = SwitchedGen_arch.BackboneResnet()
else: else: