More mods to accomodate new dataset
This commit is contained in:
parent
254cb1e915
commit
5a27187c59
|
@ -8,7 +8,7 @@ class ChunkWithReference:
|
||||||
def __init__(self, opt, path):
|
def __init__(self, opt, path):
|
||||||
self.reload(opt)
|
self.reload(opt)
|
||||||
self.path = path.path
|
self.path = path.path
|
||||||
self.tiles, _ = util.get_image_paths('img', path)
|
self.tiles, _ = util.get_image_paths('img', self.path)
|
||||||
self.centers = None
|
self.centers = None
|
||||||
|
|
||||||
def reload(self, opt):
|
def reload(self, opt):
|
||||||
|
|
|
@ -27,10 +27,10 @@ class ImageCorruptor:
|
||||||
|
|
||||||
corrupted_imgs = []
|
corrupted_imgs = []
|
||||||
for img in imgs:
|
for img in imgs:
|
||||||
for aug in self.fixed_corruptions:
|
|
||||||
img = self.apply_corruption(img, aug, rand_int_f)
|
|
||||||
for aug in augmentations:
|
for aug in augmentations:
|
||||||
img = self.apply_corruption(img, aug, rand_int_a)
|
img = self.apply_corruption(img, aug, rand_int_a)
|
||||||
|
for aug in self.fixed_corruptions:
|
||||||
|
img = self.apply_corruption(img, aug, rand_int_f)
|
||||||
corrupted_imgs.append(img)
|
corrupted_imgs.append(img)
|
||||||
|
|
||||||
return corrupted_imgs
|
return corrupted_imgs
|
||||||
|
@ -81,7 +81,7 @@ class ImageCorruptor:
|
||||||
img += np.random.randn() * noise_intensity
|
img += np.random.randn() * noise_intensity
|
||||||
elif 'jpeg' in aug:
|
elif 'jpeg' in aug:
|
||||||
# JPEG compression
|
# JPEG compression
|
||||||
qf = (rand_int % 20 + 10) # Between 10-30
|
qf = (rand_int % 20 + 5) # Between 5-25
|
||||||
# cv2's jpeg compression is "odd". It introduces artifacts. Use PIL instead.
|
# cv2's jpeg compression is "odd". It introduces artifacts. Use PIL instead.
|
||||||
img = (img * 255).astype(np.uint8)
|
img = (img * 255).astype(np.uint8)
|
||||||
img = Image.fromarray(img)
|
img = Image.fromarray(img)
|
||||||
|
|
|
@ -39,6 +39,13 @@ class SingleImageDataset(data.Dataset):
|
||||||
c.reload(opt)
|
c.reload(opt)
|
||||||
else:
|
else:
|
||||||
chunks = [ChunkWithReference(opt, d) for d in os.scandir(path) if d.is_dir()]
|
chunks = [ChunkWithReference(opt, d) for d in os.scandir(path) if d.is_dir()]
|
||||||
|
# Prune out chunks that have no images
|
||||||
|
res = []
|
||||||
|
for c in chunks:
|
||||||
|
if len(c) != 0:
|
||||||
|
res.append(c)
|
||||||
|
chunks = res
|
||||||
|
# Save to a cache.
|
||||||
torch.save(chunks, cache_path)
|
torch.save(chunks, cache_path)
|
||||||
for w in range(weight):
|
for w in range(weight):
|
||||||
self.chunks.extend(chunks)
|
self.chunks.extend(chunks)
|
||||||
|
|
|
@ -28,7 +28,8 @@ def _get_paths_from_images(path):
|
||||||
if is_image_file(fname) and 'ref.jpg' not in fname:
|
if is_image_file(fname) and 'ref.jpg' not in fname:
|
||||||
img_path = os.path.join(dirpath, fname)
|
img_path = os.path.join(dirpath, fname)
|
||||||
images.append(img_path)
|
images.append(img_path)
|
||||||
assert images, '{:s} has no valid image file'.format(path)
|
if not images:
|
||||||
|
print("Warning: {:s} has no valid image file".format(path))
|
||||||
return images
|
return images
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -677,14 +677,14 @@ class Spsr4(nn.Module):
|
||||||
|
|
||||||
|
|
||||||
class Spsr5(nn.Module):
|
class Spsr5(nn.Module):
|
||||||
def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, init_temperature=10):
|
def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, multiplexer_reductions=2, init_temperature=10):
|
||||||
super(Spsr5, self).__init__()
|
super(Spsr5, self).__init__()
|
||||||
n_upscale = int(math.log(upscale, 2))
|
n_upscale = int(math.log(upscale, 2))
|
||||||
|
|
||||||
# switch options
|
# switch options
|
||||||
transformation_filters = nf
|
transformation_filters = nf
|
||||||
self.transformation_counts = xforms
|
self.transformation_counts = xforms
|
||||||
multiplx_fn = functools.partial(QueryKeyMultiplexer, transformation_filters)
|
multiplx_fn = functools.partial(QueryKeyMultiplexer, transformation_filters, reductions=multiplexer_reductions)
|
||||||
pretransform_fn = functools.partial(ConvGnLelu, transformation_filters, transformation_filters, norm=False, bias=False, weight_init_factor=.1)
|
pretransform_fn = functools.partial(ConvGnLelu, transformation_filters, transformation_filters, norm=False, bias=False, weight_init_factor=.1)
|
||||||
transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.5),
|
transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.5),
|
||||||
transformation_filters, kernel_size=3, depth=3,
|
transformation_filters, kernel_size=3, depth=3,
|
||||||
|
|
|
@ -413,7 +413,7 @@ class BackboneEncoderNoRef(nn.Module):
|
||||||
class BackboneSpinenetNoHead(nn.Module):
|
class BackboneSpinenetNoHead(nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(BackboneSpinenetNoHead, self).__init__()
|
super(BackboneSpinenetNoHead, self).__init__()
|
||||||
self.patch_spine = SpineNet('49', in_channels=3, use_input_norm=True)
|
self.patch_spine = SpineNet('49', in_channels=3, use_input_norm=True, double_reduce_early=False)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
patch = checkpoint(self.patch_spine, x)[0]
|
patch = checkpoint(self.patch_spine, x)[0]
|
||||||
|
|
|
@ -64,6 +64,7 @@ def define_G(opt, net_key='network_G', scale=None):
|
||||||
elif which_model == "spsr5":
|
elif which_model == "spsr5":
|
||||||
xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8
|
xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8
|
||||||
netG = spsr.Spsr5(in_nc=3, out_nc=3, nf=opt_net['nf'], xforms=xforms, upscale=opt_net['scale'],
|
netG = spsr.Spsr5(in_nc=3, out_nc=3, nf=opt_net['nf'], xforms=xforms, upscale=opt_net['scale'],
|
||||||
|
multiplexer_reductions=opt_net['multiplexer_reductions'] if 'multiplexer_reductions' in opt_net.keys() else 2,
|
||||||
init_temperature=opt_net['temperature'] if 'temperature' in opt_net.keys() else 10)
|
init_temperature=opt_net['temperature'] if 'temperature' in opt_net.keys() else 10)
|
||||||
elif which_model == "ssgr1":
|
elif which_model == "ssgr1":
|
||||||
xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8
|
xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8
|
||||||
|
@ -81,6 +82,8 @@ def define_G(opt, net_key='network_G', scale=None):
|
||||||
netG = SwitchedGen_arch.BackboneEncoder(pretrained_backbone=opt_net['pretrained_spinenet'])
|
netG = SwitchedGen_arch.BackboneEncoder(pretrained_backbone=opt_net['pretrained_spinenet'])
|
||||||
elif which_model == "backbone_encoder_no_ref":
|
elif which_model == "backbone_encoder_no_ref":
|
||||||
netG = SwitchedGen_arch.BackboneEncoderNoRef(pretrained_backbone=opt_net['pretrained_spinenet'])
|
netG = SwitchedGen_arch.BackboneEncoderNoRef(pretrained_backbone=opt_net['pretrained_spinenet'])
|
||||||
|
elif which_model == "backbone_encoder_no_head":
|
||||||
|
netG = SwitchedGen_arch.BackboneSpinenetNoHead()
|
||||||
elif which_model == "backbone_resnet":
|
elif which_model == "backbone_resnet":
|
||||||
netG = SwitchedGen_arch.BackboneResnet()
|
netG = SwitchedGen_arch.BackboneResnet()
|
||||||
else:
|
else:
|
||||||
|
|
Loading…
Reference in New Issue
Block a user