back to convs?
This commit is contained in:
parent
b684622b06
commit
5c6c8f6904
397
codes/models/audio/music/transformer_diffusion11.py
Normal file
397
codes/models/audio/music/transformer_diffusion11.py
Normal file
|
@ -0,0 +1,397 @@
|
|||
import itertools
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from models.arch_util import ResBlock
|
||||
from models.audio.music.music_quantizer2 import MusicQuantizer2
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import TimestepBlock
|
||||
from models.lucidrains.x_transformers import Encoder, Attention, RMSScaleShiftNorm, RotaryEmbedding, \
|
||||
FeedForward
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint, print_network
|
||||
|
||||
|
||||
def is_latent(t):
|
||||
return t.dtype == torch.float
|
||||
|
||||
def is_sequence(t):
|
||||
return t.dtype == torch.long
|
||||
|
||||
|
||||
class MultiGroupEmbedding(nn.Module):
|
||||
def __init__(self, tokens, groups, dim):
|
||||
super().__init__()
|
||||
self.m = nn.ModuleList([nn.Embedding(tokens, dim // groups) for _ in range(groups)])
|
||||
|
||||
def forward(self, x):
|
||||
h = [embedding(x[:, :, i]) for i, embedding in enumerate(self.m)]
|
||||
return torch.cat(h, dim=-1)
|
||||
|
||||
|
||||
class TimestepRotaryEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
def forward(self, x, emb, rotary_emb):
|
||||
for layer in self:
|
||||
if isinstance(layer, TimestepBlock):
|
||||
x = layer(x, emb, rotary_emb)
|
||||
else:
|
||||
x = layer(x, rotary_emb)
|
||||
return x
|
||||
|
||||
|
||||
class SubBlock(nn.Module):
|
||||
def __init__(self, inp_dim, contraction_dim, heads, dropout):
|
||||
super().__init__()
|
||||
self.attn = Attention(inp_dim, out_dim=contraction_dim, heads=heads, dim_head=contraction_dim//heads, causal=False, dropout=dropout)
|
||||
self.attnorm = nn.LayerNorm(contraction_dim)
|
||||
self.ff = nn.Conv1d(inp_dim+contraction_dim, contraction_dim, kernel_size=3, padding=1)
|
||||
self.ffnorm = nn.LayerNorm(contraction_dim)
|
||||
|
||||
def forward(self, x, rotary_emb):
|
||||
ah, _, _, _ = checkpoint(self.attn, x, None, None, None, None, None, rotary_emb)
|
||||
ah = F.gelu(self.attnorm(ah))
|
||||
h = torch.cat([ah, x], dim=-1)
|
||||
hf = checkpoint(self.ff, h.permute(0,2,1)).permute(0,2,1)
|
||||
hf = F.gelu(self.ffnorm(hf))
|
||||
h = torch.cat([h, hf], dim=-1)
|
||||
return h
|
||||
|
||||
|
||||
class ConcatAttentionBlock(TimestepBlock):
|
||||
def __init__(self, trunk_dim, heads, dropout):
|
||||
super().__init__()
|
||||
contraction_dim = trunk_dim // 4
|
||||
self.prenorm = RMSScaleShiftNorm(trunk_dim, bias=False)
|
||||
self.block1 = SubBlock(trunk_dim, contraction_dim, heads, dropout)
|
||||
self.block2 = SubBlock(trunk_dim+contraction_dim*2, contraction_dim, heads, dropout)
|
||||
self.block3 = SubBlock(trunk_dim+contraction_dim*4, contraction_dim, heads, dropout)
|
||||
self.out = nn.Linear(contraction_dim*6, trunk_dim, bias=False)
|
||||
self.out.weight.data.zero_()
|
||||
|
||||
def forward(self, x, timestep_emb, rotary_emb):
|
||||
h = self.prenorm(x, norm_scale_shift_inp=timestep_emb)
|
||||
h = self.block1(h, rotary_emb)
|
||||
h = self.block2(h, rotary_emb)
|
||||
h = self.block3(h, rotary_emb)
|
||||
h = self.out(h[:,:,x.shape[-1]:])
|
||||
return h + x
|
||||
|
||||
|
||||
class TransformerDiffusion(nn.Module):
|
||||
"""
|
||||
A diffusion model composed entirely of stacks of transformer layers. Why would you do it any other way?
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
prenet_channels=256,
|
||||
prenet_layers=3,
|
||||
model_channels=512,
|
||||
num_layers=8,
|
||||
in_channels=256,
|
||||
rotary_emb_dim=32,
|
||||
input_vec_dim=512,
|
||||
out_channels=512, # mean and variance
|
||||
num_heads=16,
|
||||
dropout=0,
|
||||
use_fp16=False,
|
||||
ar_prior=False,
|
||||
# Parameters for regularization.
|
||||
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.prenet_channels = prenet_channels
|
||||
self.out_channels = out_channels
|
||||
self.dropout = dropout
|
||||
self.unconditioned_percentage = unconditioned_percentage
|
||||
self.enable_fp16 = use_fp16
|
||||
|
||||
self.inp_block = conv_nd(1, in_channels, prenet_channels, 3, 1, 1)
|
||||
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(prenet_channels, prenet_channels),
|
||||
nn.SiLU(),
|
||||
linear(prenet_channels, model_channels),
|
||||
)
|
||||
|
||||
self.ar_prior = ar_prior
|
||||
prenet_heads = prenet_channels//64
|
||||
if ar_prior:
|
||||
self.ar_input = nn.Linear(input_vec_dim, prenet_channels)
|
||||
self.ar_prior_intg = Encoder(
|
||||
dim=prenet_channels,
|
||||
depth=prenet_layers,
|
||||
heads=prenet_heads,
|
||||
ff_dropout=dropout,
|
||||
attn_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
rotary_pos_emb=True,
|
||||
zero_init_branch_output=True,
|
||||
ff_mult=1,
|
||||
)
|
||||
else:
|
||||
self.input_converter = nn.Linear(input_vec_dim, prenet_channels)
|
||||
self.code_converter = Encoder(
|
||||
dim=prenet_channels,
|
||||
depth=prenet_layers,
|
||||
heads=prenet_heads,
|
||||
ff_dropout=dropout,
|
||||
attn_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
rotary_pos_emb=True,
|
||||
zero_init_branch_output=True,
|
||||
ff_mult=1,
|
||||
)
|
||||
|
||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1,1,prenet_channels))
|
||||
self.rotary_embeddings = RotaryEmbedding(rotary_emb_dim)
|
||||
self.intg = nn.Linear(prenet_channels*2, model_channels)
|
||||
self.layers = TimestepRotaryEmbedSequential(*[ConcatAttentionBlock(model_channels, num_heads, dropout) for _ in range(num_layers)])
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(model_channels),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
|
||||
)
|
||||
|
||||
self.debug_codes = {}
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
groups = {
|
||||
'layers': list(self.layers.parameters()) + list(self.inp_block.parameters()),
|
||||
'code_converters': list(self.input_converter.parameters()) + list(self.code_converter.parameters()),
|
||||
'time_embed': list(self.time_embed.parameters()),
|
||||
}
|
||||
return groups
|
||||
|
||||
def timestep_independent(self, prior, expected_seq_len):
|
||||
code_emb = self.ar_input(prior) if self.ar_prior else self.input_converter(prior)
|
||||
code_emb = self.ar_prior_intg(code_emb) if self.ar_prior else self.code_converter(code_emb)
|
||||
|
||||
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
||||
if self.training and self.unconditioned_percentage > 0:
|
||||
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
|
||||
device=code_emb.device) < self.unconditioned_percentage
|
||||
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(prior.shape[0], 1, 1),
|
||||
code_emb)
|
||||
|
||||
expanded_code_emb = F.interpolate(code_emb.permute(0,2,1), size=expected_seq_len, mode='nearest').permute(0,2,1)
|
||||
return expanded_code_emb
|
||||
|
||||
def forward(self, x, timesteps, codes=None, conditioning_input=None, precomputed_code_embeddings=None, conditioning_free=False):
|
||||
if precomputed_code_embeddings is not None:
|
||||
assert codes is None and conditioning_input is None, "Do not provide precomputed embeddings and the other parameters. It is unclear what you want me to do here."
|
||||
|
||||
unused_params = []
|
||||
if conditioning_free:
|
||||
code_emb = self.unconditioned_embedding.repeat(x.shape[0], x.shape[-1], 1)
|
||||
else:
|
||||
if precomputed_code_embeddings is not None:
|
||||
code_emb = precomputed_code_embeddings
|
||||
else:
|
||||
code_emb = self.timestep_independent(codes, x.shape[-1])
|
||||
unused_params.append(self.unconditioned_embedding)
|
||||
|
||||
with torch.autocast(x.device.type, enabled=self.enable_fp16):
|
||||
blk_emb = self.time_embed(timestep_embedding(timesteps, self.prenet_channels))
|
||||
x = self.inp_block(x).permute(0,2,1)
|
||||
|
||||
rotary_pos_emb = self.rotary_embeddings(x.shape[1], x.device)
|
||||
x = self.intg(torch.cat([x, code_emb], dim=-1))
|
||||
for layer in self.layers:
|
||||
x = checkpoint(layer, x, blk_emb, rotary_pos_emb)
|
||||
|
||||
x = x.float().permute(0,2,1)
|
||||
out = self.out(x)
|
||||
|
||||
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
|
||||
extraneous_addition = 0
|
||||
for p in unused_params:
|
||||
extraneous_addition = extraneous_addition + p.mean()
|
||||
out = out + extraneous_addition * 0
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class TransformerDiffusionWithQuantizer(nn.Module):
|
||||
def __init__(self, quantizer_dims=[1024], freeze_quantizer_until=20000, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
self.internal_step = 0
|
||||
self.freeze_quantizer_until = freeze_quantizer_until
|
||||
self.diff = TransformerDiffusion(**kwargs)
|
||||
self.quantizer = MusicQuantizer2(inp_channels=kwargs['in_channels'], inner_dim=quantizer_dims,
|
||||
codevector_dim=quantizer_dims[0], codebook_size=256,
|
||||
codebook_groups=2, max_gumbel_temperature=4, min_gumbel_temperature=.5)
|
||||
self.quantizer.quantizer.temperature = self.quantizer.min_gumbel_temperature
|
||||
del self.quantizer.up
|
||||
|
||||
def update_for_step(self, step, *args):
|
||||
self.internal_step = step
|
||||
qstep = max(0, self.internal_step - self.freeze_quantizer_until)
|
||||
self.quantizer.quantizer.temperature = max(
|
||||
self.quantizer.max_gumbel_temperature * self.quantizer.gumbel_temperature_decay ** qstep,
|
||||
self.quantizer.min_gumbel_temperature,
|
||||
)
|
||||
|
||||
def forward(self, x, timesteps, truth_mel, conditioning_input=None, disable_diversity=False, conditioning_free=False):
|
||||
quant_grad_enabled = self.internal_step > self.freeze_quantizer_until
|
||||
with torch.set_grad_enabled(quant_grad_enabled):
|
||||
proj, diversity_loss = self.quantizer(truth_mel, return_decoder_latent=True)
|
||||
proj = proj.permute(0,2,1)
|
||||
|
||||
# Make sure this does not cause issues in DDP by explicitly using the parameters for nothing.
|
||||
if not quant_grad_enabled:
|
||||
unused = 0
|
||||
for p in self.quantizer.parameters():
|
||||
unused = unused + p.mean() * 0
|
||||
proj = proj + unused
|
||||
diversity_loss = diversity_loss * 0
|
||||
|
||||
diff = self.diff(x, timesteps, codes=proj, conditioning_input=conditioning_input, conditioning_free=conditioning_free)
|
||||
if disable_diversity:
|
||||
return diff
|
||||
return diff, diversity_loss
|
||||
|
||||
def get_debug_values(self, step, __):
|
||||
if self.quantizer.total_codes > 0:
|
||||
return {'histogram_quant_codes': self.quantizer.codes[:self.quantizer.total_codes],
|
||||
'gumbel_temperature': self.quantizer.quantizer.temperature}
|
||||
else:
|
||||
return {}
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
attn1 = list(itertools.chain.from_iterable([lyr.block1.attn.parameters() for lyr in self.diff.layers]))
|
||||
attn2 = list(itertools.chain.from_iterable([lyr.block2.attn.parameters() for lyr in self.diff.layers]))
|
||||
attn3 = list(itertools.chain.from_iterable([lyr.block3.attn.parameters() for lyr in self.diff.layers]))
|
||||
ff1 = list(itertools.chain.from_iterable([lyr.block1.ff.parameters() for lyr in self.diff.layers]))
|
||||
ff2 = list(itertools.chain.from_iterable([lyr.block2.ff.parameters() for lyr in self.diff.layers]))
|
||||
ff3 = list(itertools.chain.from_iterable([lyr.block3.ff.parameters() for lyr in self.diff.layers]))
|
||||
blkout_layers = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.diff.layers]))
|
||||
groups = {
|
||||
'blk1_attention_layers': attn1,
|
||||
'blk2_attention_layers': attn2,
|
||||
'blk2_attention_layers': attn3,
|
||||
'attention_layers': attn1 + attn2 + attn3,
|
||||
'blk1_ff_layers': ff1,
|
||||
'blk2_ff_layers': ff2,
|
||||
'blk3_ff_layers': ff2,
|
||||
'ff_layers': ff1 + ff2 + ff3,
|
||||
'block_out_layers': blkout_layers,
|
||||
'quantizer_encoder': list(self.quantizer.encoder.parameters()),
|
||||
'quant_codebook': [self.quantizer.quantizer.codevectors],
|
||||
'rotary_embeddings': list(self.diff.rotary_embeddings.parameters()),
|
||||
'out': list(self.diff.out.parameters()),
|
||||
'x_proj': list(self.diff.inp_block.parameters()),
|
||||
'layers': list(self.diff.layers.parameters()),
|
||||
'code_converters': list(self.diff.input_converter.parameters()) + list(self.diff.code_converter.parameters()),
|
||||
'time_embed': list(self.diff.time_embed.parameters()),
|
||||
}
|
||||
return groups
|
||||
|
||||
|
||||
class TransformerDiffusionWithARPrior(nn.Module):
|
||||
def __init__(self, freeze_diff=False, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
self.internal_step = 0
|
||||
from models.audio.music.gpt_music import GptMusicLower
|
||||
self.ar = GptMusicLower(dim=512, layers=12)
|
||||
for p in self.ar.parameters():
|
||||
p.DO_NOT_TRAIN = True
|
||||
p.requires_grad = False
|
||||
|
||||
self.diff = TransformerDiffusion(ar_prior=True, **kwargs)
|
||||
if freeze_diff:
|
||||
for p in self.diff.parameters():
|
||||
p.DO_NOT_TRAIN = True
|
||||
p.requires_grad = False
|
||||
for p in list(self.diff.ar_prior_intg.parameters()) + list(self.diff.ar_input.parameters()):
|
||||
del p.DO_NOT_TRAIN
|
||||
p.requires_grad = True
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
groups = {
|
||||
'attention_layers': list(itertools.chain.from_iterable([lyr.attn.parameters() for lyr in self.diff.layers])),
|
||||
'ff_layers': list(itertools.chain.from_iterable([lyr.ff.parameters() for lyr in self.diff.layers])),
|
||||
'rotary_embeddings': list(self.diff.rotary_embeddings.parameters()),
|
||||
'out': list(self.diff.out.parameters()),
|
||||
'x_proj': list(self.diff.inp_block.parameters()),
|
||||
'layers': list(self.diff.layers.parameters()),
|
||||
'ar_prior_intg': list(self.diff.ar_prior_intg.parameters()),
|
||||
'time_embed': list(self.diff.time_embed.parameters()),
|
||||
}
|
||||
return groups
|
||||
|
||||
def forward(self, x, timesteps, truth_mel, disable_diversity=False, conditioning_input=None, conditioning_free=False):
|
||||
with torch.no_grad():
|
||||
prior = self.ar(truth_mel, conditioning_input, return_latent=True)
|
||||
|
||||
diff = self.diff(x, timesteps, prior, conditioning_free=conditioning_free)
|
||||
return diff
|
||||
|
||||
|
||||
@register_model
|
||||
def register_transformer_diffusion11(opt_net, opt):
|
||||
return TransformerDiffusion(**opt_net['kwargs'])
|
||||
|
||||
|
||||
@register_model
|
||||
def register_transformer_diffusion11_with_quantizer(opt_net, opt):
|
||||
return TransformerDiffusionWithQuantizer(**opt_net['kwargs'])
|
||||
|
||||
|
||||
@register_model
|
||||
def register_transformer_diffusion11_with_ar_prior(opt_net, opt):
|
||||
return TransformerDiffusionWithARPrior(**opt_net['kwargs'])
|
||||
|
||||
|
||||
def test_quant_model():
|
||||
clip = torch.randn(2, 256, 400)
|
||||
cond = torch.randn(2, 256, 400)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
model = TransformerDiffusionWithQuantizer(in_channels=256, model_channels=1024,
|
||||
prenet_channels=1024, num_heads=4,
|
||||
input_vec_dim=1024, num_layers=20, prenet_layers=6,
|
||||
dropout=.1)
|
||||
|
||||
quant_weights = torch.load('D:\\dlas\\experiments\\train_music_quant_r4\\models\\5000_generator.pth')
|
||||
model.quantizer.load_state_dict(quant_weights, strict=False)
|
||||
|
||||
torch.save(model.state_dict(), 'sample.pth')
|
||||
print_network(model)
|
||||
o = model(clip, ts, clip, cond)
|
||||
model.get_grad_norm_parameter_groups()
|
||||
|
||||
|
||||
def test_ar_model():
|
||||
clip = torch.randn(2, 256, 400)
|
||||
cond = torch.randn(2, 256, 400)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
model = TransformerDiffusionWithARPrior(model_channels=2048, prenet_channels=1536,
|
||||
input_vec_dim=512, num_layers=16, prenet_layers=6, freeze_diff=True,
|
||||
unconditioned_percentage=.4)
|
||||
model.get_grad_norm_parameter_groups()
|
||||
|
||||
ar_weights = torch.load('D:\\dlas\\experiments\\train_music_gpt\\models\\44500_generator_ema.pth')
|
||||
model.ar.load_state_dict(ar_weights, strict=True)
|
||||
diff_weights = torch.load('X:\\dlas\\experiments\\train_music_diffusion_tfd8\\models\\47500_generator_ema.pth')
|
||||
pruned_diff_weights = {}
|
||||
for k,v in diff_weights.items():
|
||||
if k.startswith('diff.'):
|
||||
pruned_diff_weights[k.replace('diff.', '')] = v
|
||||
model.diff.load_state_dict(pruned_diff_weights, strict=False)
|
||||
torch.save(model.state_dict(), 'sample.pth')
|
||||
|
||||
model(clip, ts, cond, conditioning_input=cond)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_quant_model()
|
Loading…
Reference in New Issue
Block a user