SRG2 revival

Big update to SRG2 architecture to pull in a lot of things that have been learned:
- Use group norm instead of batch norm
- Initialize the weights on the transformations low like is done in RRDB rather than using the scalar. Models live or die by their early stages, and this ones early stage is pretty weak
- Transform multiplexer to use u-net like architecture.
- Just use one set of configuration variables instead of a list - flat networks performed fine in this regard.
This commit is contained in:
James Betker 2020-07-09 17:34:51 -06:00
parent 12da993da8
commit 5f2c722a10
6 changed files with 124 additions and 74 deletions

View File

@ -1,6 +1,7 @@
import torch
from torch import nn
from models.archs.SwitchedResidualGenerator_arch import ConvBnLelu, ConvBnRelu, MultiConvBlock, initialize_weights
from models.archs.arch_util import ConvBnLelu, ConvBnRelu
from models.archs.SwitchedResidualGenerator_arch import MultiConvBlock
from switched_conv import BareConvSwitch, compute_attention_specificity
from switched_conv_util import save_attention_to_image
from functools import partial

View File

@ -4,20 +4,20 @@ from switched_conv import BareConvSwitch, compute_attention_specificity
import torch.nn.functional as F
import functools
from collections import OrderedDict
from models.archs.arch_util import initialize_weights, ConvBnRelu, ConvBnLelu, ConvBnSilu
from models.archs.arch_util import ConvBnLelu, ConvGnSilu
from models.archs.RRDBNet_arch import ResidualDenseBlock_5C
from models.archs.spinenet_arch import SpineNet
from switched_conv_util import save_attention_to_image
class MultiConvBlock(nn.Module):
def __init__(self, filters_in, filters_mid, filters_out, kernel_size, depth, scale_init=1, bn=False):
def __init__(self, filters_in, filters_mid, filters_out, kernel_size, depth, scale_init=1, bn=False, weight_init_factor=1):
assert depth >= 2
super(MultiConvBlock, self).__init__()
self.noise_scale = nn.Parameter(torch.full((1,), fill_value=.01))
self.bnconvs = nn.ModuleList([ConvBnLelu(filters_in, filters_mid, kernel_size, bn=bn, bias=False)] +
[ConvBnLelu(filters_mid, filters_mid, kernel_size, bn=bn, bias=False) for i in range(depth-2)] +
[ConvBnLelu(filters_mid, filters_out, kernel_size, lelu=False, bn=False, bias=False)])
self.bnconvs = nn.ModuleList([ConvBnLelu(filters_in, filters_mid, kernel_size, bn=bn, bias=False, weight_init_factor=weight_init_factor)] +
[ConvBnLelu(filters_mid, filters_mid, kernel_size, bn=bn, bias=False, weight_init_factor=weight_init_factor) for i in range(depth-2)] +
[ConvBnLelu(filters_mid, filters_out, kernel_size, lelu=False, bn=False, bias=False, weight_init_factor=weight_init_factor)])
self.scale = nn.Parameter(torch.full((1,), fill_value=scale_init))
self.bias = nn.Parameter(torch.zeros(1))
@ -35,43 +35,56 @@ class MultiConvBlock(nn.Module):
class HalvingProcessingBlock(nn.Module):
def __init__(self, filters):
super(HalvingProcessingBlock, self).__init__()
self.bnconv1 = ConvBnLelu(filters, filters * 2, stride=2, bn=False, bias=False)
self.bnconv2 = ConvBnLelu(filters * 2, filters * 2, bn=True, bias=False)
self.bnconv1 = ConvGnSilu(filters, filters * 2, stride=2, gn=False, bias=False)
self.bnconv2 = ConvGnSilu(filters * 2, filters * 2, gn=True, bias=False)
def forward(self, x):
x = self.bnconv1(x)
return self.bnconv2(x)
# Creates a nested series of convolutional blocks. Each block processes the input data in-place and adds
# filter_growth filters. Return is (nn.Sequential, ending_filters)
def create_sequential_growing_processing_block(filters_init, filter_growth, num_convs):
convs = []
current_filters = filters_init
for i in range(num_convs):
convs.append(ConvBnSilu(current_filters, current_filters + filter_growth, bn=True, bias=False))
current_filters += filter_growth
return nn.Sequential(*convs), current_filters
class ExpansionBlock(nn.Module):
def __init__(self, filters):
super(ExpansionBlock, self).__init__()
self.decimate = ConvGnSilu(filters, filters // 2, kernel_size=1, bias=False, silu=False, gn=False)
self.conjoin = ConvGnSilu(filters, filters // 2, kernel_size=3, bias=True, silu=False, gn=True)
self.process = ConvGnSilu(filters // 2, filters // 2, kernel_size=3, bias=False, silu=True, gn=True)
def forward(self, input, passthrough):
x = F.interpolate(input, scale_factor=2, mode="nearest")
x = self.decimate(x)
x = self.conjoin(torch.cat([x, passthrough], dim=1))
return self.process(x)
# This is a classic u-net architecture with the goal of assigning each individual pixel an individual transform
# switching set.
class ConvBasisMultiplexer(nn.Module):
def __init__(self, input_channels, base_filters, growth, reductions, processing_depth, multiplexer_channels, use_bn=True):
def __init__(self, input_channels, base_filters, reductions, processing_depth, multiplexer_channels, use_gn=True):
super(ConvBasisMultiplexer, self).__init__()
self.filter_conv = ConvBnSilu(input_channels, base_filters, bias=True)
self.reduction_blocks = nn.Sequential(OrderedDict([('block%i:' % (i,), HalvingProcessingBlock(base_filters * 2 ** i)) for i in range(reductions)]))
self.filter_conv = ConvGnSilu(input_channels, base_filters, bias=True)
self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(base_filters * 2 ** i) for i in range(reductions)])
reduction_filters = base_filters * 2 ** reductions
self.processing_blocks, self.output_filter_count = create_sequential_growing_processing_block(reduction_filters, growth, processing_depth)
self.processing_blocks = nn.Sequential(OrderedDict([('block%i' % (i,), ConvGnSilu(reduction_filters, reduction_filters, bias=False)) for i in range(processing_depth)]))
self.expansion_blocks = nn.ModuleList([ExpansionBlock(reduction_filters // (2 ** i)) for i in range(reductions)])
gap = self.output_filter_count - multiplexer_channels
# Hey silly - if you're going to interpolate later, do it here instead. Then add some processing layers to let the model adjust it properly.
self.cbl1 = ConvBnSilu(self.output_filter_count, self.output_filter_count - (gap // 2), bn=use_bn, bias=False)
self.cbl2 = ConvBnSilu(self.output_filter_count - (gap // 2), self.output_filter_count - (3 * gap // 4), bn=use_bn, bias=False)
self.cbl3 = ConvBnSilu(self.output_filter_count - (3 * gap // 4), multiplexer_channels, bias=True)
gap = base_filters - multiplexer_channels
cbl1_out = ((base_filters - (gap // 2)) // 4) * 4 # Must be multiples of 4 to use with group norm.
self.cbl1 = ConvGnSilu(base_filters, cbl1_out, gn=use_gn, bias=False, num_groups=4)
cbl2_out = ((base_filters - (3 * gap // 4)) // 4) * 4
self.cbl2 = ConvGnSilu(cbl1_out, cbl2_out, gn=use_gn, bias=False, num_groups=4)
self.cbl3 = ConvGnSilu(cbl2_out, multiplexer_channels, bias=True, gn=False)
def forward(self, x):
x = self.filter_conv(x)
x = self.reduction_blocks(x)
reduction_identities = []
for b in self.reduction_blocks:
reduction_identities.append(x)
x = b(x)
x = self.processing_blocks(x)
for i, b in enumerate(self.expansion_blocks):
x = b(x, reduction_identities[-i - 1])
x = self.cbl1(x)
x = self.cbl2(x)
x = self.cbl3(x)
@ -94,13 +107,13 @@ class BackboneMultiplexer(nn.Module):
def __init__(self, backbone: CachedBackboneWrapper, transform_count):
super(BackboneMultiplexer, self).__init__()
self.backbone = backbone
self.proc = nn.Sequential(ConvBnSilu(256, 256, kernel_size=3, bias=True),
ConvBnSilu(256, 256, kernel_size=3, bias=False))
self.up1 = nn.Sequential(ConvBnSilu(256, 128, kernel_size=3, bias=False, bn=False, silu=False),
ConvBnSilu(128, 128, kernel_size=3, bias=False))
self.up2 = nn.Sequential(ConvBnSilu(128, 64, kernel_size=3, bias=False, bn=False, silu=False),
ConvBnSilu(64, 64, kernel_size=3, bias=False))
self.final = ConvBnSilu(64, transform_count, bias=False, bn=False, silu=False)
self.proc = nn.Sequential(ConvGnSilu(256, 256, kernel_size=3, bias=True),
ConvGnSilu(256, 256, kernel_size=3, bias=False))
self.up1 = nn.Sequential(ConvGnSilu(256, 128, kernel_size=3, bias=False, gn=False, silu=False),
ConvGnSilu(128, 128, kernel_size=3, bias=False))
self.up2 = nn.Sequential(ConvGnSilu(128, 64, kernel_size=3, bias=False, gn=False, silu=False),
ConvGnSilu(64, 64, kernel_size=3, bias=False))
self.final = ConvGnSilu(64, transform_count, bias=False, gn=False, silu=False)
def forward(self, x):
spine = self.backbone.get_forward_result()
@ -112,13 +125,10 @@ class BackboneMultiplexer(nn.Module):
class ConfigurableSwitchComputer(nn.Module):
def __init__(self, base_filters, multiplexer_net, pre_transform_block, transform_block, transform_count, init_temp=20,
enable_negative_transforms=False, add_scalable_noise_to_transforms=False, init_scalar=1):
add_scalable_noise_to_transforms=False):
super(ConfigurableSwitchComputer, self).__init__()
self.enable_negative_transforms = enable_negative_transforms
tc = transform_count
if self.enable_negative_transforms:
tc = transform_count * 2
self.multiplexer = multiplexer_net(tc)
self.pre_transform = pre_transform_block()
@ -128,11 +138,11 @@ class ConfigurableSwitchComputer(nn.Module):
# And the switch itself, including learned scalars
self.switch = BareConvSwitch(initial_temperature=init_temp)
self.switch_scale = nn.Parameter(torch.full((1,), float(init_scalar)))
self.post_switch_conv = ConvBnLelu(base_filters, base_filters, bn=False, bias=False)
# The post_switch_conv gets a near-zero scale. The network can decide to magnify it (or not) depending on its needs.
self.psc_scale = nn.Parameter(torch.full((1,), float(1e-3)))
self.bias = nn.Parameter(torch.zeros(1))
self.switch_scale = nn.Parameter(torch.full((1,), float(1)))
self.post_switch_conv = ConvBnLelu(base_filters, base_filters, bn=False, bias=True)
# The post_switch_conv gets a low scale initially. The network can decide to magnify it (or not)
# depending on its needs.
self.psc_scale = nn.Parameter(torch.full((1,), float(.1)))
def forward(self, x, output_attention_weights=False):
identity = x
@ -142,17 +152,12 @@ class ConfigurableSwitchComputer(nn.Module):
x = self.pre_transform(x)
xformed = [t.forward(x) for t in self.transforms]
if self.enable_negative_transforms:
xformed.extend([-t for t in xformed])
m = self.multiplexer(identity)
# Interpolate the multiplexer across the entire shape of the image.
m = F.interpolate(m, size=xformed[0].shape[2:], mode='nearest')
outputs, attention = self.switch(xformed, m, True)
outputs = identity + outputs * self.switch_scale
outputs = identity + self.post_switch_conv(outputs) * self.psc_scale
outputs = outputs + self.bias
outputs = outputs + self.post_switch_conv(outputs) * self.psc_scale
if output_attention_weights:
return outputs, attention
else:
@ -163,25 +168,25 @@ class ConfigurableSwitchComputer(nn.Module):
class ConfigurableSwitchedResidualGenerator2(nn.Module):
def __init__(self, switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes,
def __init__(self, switch_depth, switch_filters, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes,
trans_layers, transformation_filters, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1,
heightened_final_step=50000, upsample_factor=1, enable_negative_transforms=False,
heightened_final_step=50000, upsample_factor=1,
add_scalable_noise_to_transforms=False):
super(ConfigurableSwitchedResidualGenerator2, self).__init__()
switches = []
self.initial_conv = ConvBnLelu(3, transformation_filters, bn=False, lelu=False, bias=True)
self.sw_conv = ConvBnLelu(transformation_filters, transformation_filters, lelu=False, bias=True)
self.upconv1 = ConvBnLelu(transformation_filters, transformation_filters, bn=False, bias=True)
self.upconv2 = ConvBnLelu(transformation_filters, transformation_filters, bn=False, bias=True)
self.hr_conv = ConvBnLelu(transformation_filters, transformation_filters, bn=False, bias=True)
self.final_conv = ConvBnLelu(transformation_filters, 3, bn=False, lelu=False, bias=True)
for filters, growth, sw_reduce, sw_proc, trans_count, kernel, layers in zip(switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers):
multiplx_fn = functools.partial(ConvBasisMultiplexer, transformation_filters, filters, growth, sw_reduce, sw_proc, trans_count)
for _ in range(switch_depth):
multiplx_fn = functools.partial(ConvBasisMultiplexer, transformation_filters, switch_filters, switch_reductions, switch_processing_layers, trans_counts)
pretransform_fn = functools.partial(ConvBnLelu, transformation_filters, transformation_filters, bn=False, bias=False, weight_init_factor=.1)
transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.5), transformation_filters, kernel_size=trans_kernel_sizes, depth=trans_layers, weight_init_factor=.1)
switches.append(ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
pre_transform_block=functools.partial(ConvBnLelu, transformation_filters, transformation_filters, bn=False, bias=False),
transform_block=functools.partial(MultiConvBlock, transformation_filters, transformation_filters + growth, transformation_filters, kernel_size=kernel, depth=layers),
transform_count=trans_count, init_temp=initial_temp, enable_negative_transforms=enable_negative_transforms,
add_scalable_noise_to_transforms=add_scalable_noise_to_transforms, init_scalar=.1))
pre_transform_block=pretransform_fn, transform_block=transform_fn,
transform_count=trans_counts, init_temp=initial_temp,
add_scalable_noise_to_transforms=add_scalable_noise_to_transforms))
self.switches = nn.ModuleList(switches)
self.transformation_counts = trans_counts
@ -268,7 +273,7 @@ class ConfigurableSwitchedResidualGenerator3(nn.Module):
pretransform_fn = functools.partial(nn.Sequential, ConvBnLelu(base_filters, base_filters, kernel_size=3, bn=False, lelu=False, bias=False))
transform_fn = functools.partial(MultiConvBlock, base_filters, int(base_filters * 1.5), base_filters, kernel_size=3, depth=4)
self.switch = ConfigurableSwitchComputer(base_filters, multiplx_fn, pretransform_fn, transform_fn, trans_count, init_temp=initial_temp,
enable_negative_transforms=False, add_scalable_noise_to_transforms=True, init_scalar=.1)
add_scalable_noise_to_transforms=True, init_scalar=.1)
self.transformation_counts = trans_count
self.init_temperature = initial_temp

View File

@ -219,7 +219,7 @@ class ConvBnRelu(nn.Module):
''' Convenience class with Conv->BN->SiLU. Includes weight initialization and auto-padding for standard
kernel sizes. '''
class ConvBnSilu(nn.Module):
def __init__(self, filters_in, filters_out, kernel_size=3, stride=1, silu=True, bn=True, bias=True):
def __init__(self, filters_in, filters_out, kernel_size=3, stride=1, silu=True, bn=True, bias=True, weight_init_factor=1):
super(ConvBnSilu, self).__init__()
padding_map = {1: 0, 3: 1, 5: 2, 7: 3}
assert kernel_size in padding_map.keys()
@ -237,6 +237,9 @@ class ConvBnSilu(nn.Module):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu' if self.silu else 'linear')
m.weight.data *= weight_init_factor
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
@ -254,7 +257,7 @@ class ConvBnSilu(nn.Module):
''' Convenience class with Conv->BN->LeakyReLU. Includes weight initialization and auto-padding for standard
kernel sizes. '''
class ConvBnLelu(nn.Module):
def __init__(self, filters_in, filters_out, kernel_size=3, stride=1, lelu=True, bn=True, bias=True):
def __init__(self, filters_in, filters_out, kernel_size=3, stride=1, lelu=True, bn=True, bias=True, weight_init_factor=1):
super(ConvBnLelu, self).__init__()
padding_map = {1: 0, 3: 1, 5: 2, 7: 3}
assert kernel_size in padding_map.keys()
@ -273,6 +276,9 @@ class ConvBnLelu(nn.Module):
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, a=.1, mode='fan_out',
nonlinearity='leaky_relu' if self.lelu else 'linear')
m.weight.data *= weight_init_factor
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
@ -319,5 +325,42 @@ class ConvGnLelu(nn.Module):
x = self.gn(x)
if self.lelu:
return self.lelu(x)
else:
return x
''' Convenience class with Conv->BN->SiLU. Includes weight initialization and auto-padding for standard
kernel sizes. '''
class ConvGnSilu(nn.Module):
def __init__(self, filters_in, filters_out, kernel_size=3, stride=1, silu=True, gn=True, bias=True, num_groups=8, weight_init_factor=1):
super(ConvGnSilu, self).__init__()
padding_map = {1: 0, 3: 1, 5: 2, 7: 3}
assert kernel_size in padding_map.keys()
self.conv = nn.Conv2d(filters_in, filters_out, kernel_size, stride, padding_map[kernel_size], bias=bias)
if gn:
self.gn = nn.GroupNorm(num_groups, filters_out)
else:
self.gn = None
if silu:
self.silu = SiLU()
else:
self.silu = None
# Init params.
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu' if self.silu else 'linear')
m.weight.data *= weight_init_factor
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.conv(x)
if self.gn:
x = self.gn(x)
if self.silu:
return self.silu(x)
else:
return x

View File

@ -59,7 +59,7 @@ def define_G(opt, net_key='network_G'):
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
elif which_model == "ConfigurableSwitchedResidualGenerator2":
netG = SwitchedGen_arch.ConfigurableSwitchedResidualGenerator2(switch_filters=opt_net['switch_filters'], switch_growths=opt_net['switch_growths'],
netG = SwitchedGen_arch.ConfigurableSwitchedResidualGenerator2(switch_depth=opt_net['switch_depth'], switch_filters=opt_net['switch_filters'],
switch_reductions=opt_net['switch_reductions'],
switch_processing_layers=opt_net['switch_processing_layers'], trans_counts=opt_net['trans_counts'],
trans_kernel_sizes=opt_net['trans_kernel_sizes'], trans_layers=opt_net['trans_layers'],

View File

@ -32,7 +32,7 @@ def init_dist(backend='nccl', **kwargs):
def main():
#### options
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_div2k_pixgan_rrdb.yml')
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_div2k_pixgan_srg2.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)

View File

@ -97,20 +97,19 @@ if __name__ == "__main__":
torch.randn(1, 3, 64, 64),
device='cuda')
'''
'''
test_stability(functools.partial(srg.ConfigurableSwitchedResidualGenerator2,
switch_filters=[32,32,32,32],
switch_growths=[16,16,16,16],
switch_reductions=[4,3,2,1],
switch_processing_layers=[3,3,4,5],
trans_counts=[16,16,16,16,16],
trans_kernel_sizes=[3,3,3,3,3],
trans_layers=[3,3,3,3,3],
switch_depth=4,
switch_filters=64,
switch_reductions=4,
switch_processing_layers=2,
trans_counts=8,
trans_kernel_sizes=3,
trans_layers=4,
transformation_filters=64,
initial_temp=10),
upsample_factor=4),
torch.randn(1, 3, 64, 64),
device='cuda')
'''
'''
test_stability(functools.partial(srg1.ConfigurableSwitchedResidualGenerator,
switch_filters=[32,32,32,32],
@ -125,7 +124,9 @@ if __name__ == "__main__":
torch.randn(1, 3, 64, 64),
device='cuda')
'''
'''
test_stability(functools.partial(srg.ConfigurableSwitchedResidualGenerator3,
64, 16),
torch.randn(1, 3, 64, 64),
device='cuda')
device='cuda')
'''