RRDB with bypass
This commit is contained in:
parent
1655b9e242
commit
607ff3c67c
|
@ -1,9 +1,12 @@
|
|||
import os
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchvision
|
||||
from torch.utils.checkpoint import checkpoint_sequential
|
||||
|
||||
from models.archs.arch_util import make_layer, default_init_weights
|
||||
from models.archs.arch_util import make_layer, default_init_weights, ConvGnSilu
|
||||
|
||||
|
||||
class ResidualDenseBlock(nn.Module):
|
||||
|
@ -79,6 +82,44 @@ class RRDB(nn.Module):
|
|||
return out * 0.2 + x
|
||||
|
||||
|
||||
class RRDBWithBypass(nn.Module):
|
||||
"""Residual in Residual Dense Block.
|
||||
|
||||
Used in RRDB-Net in ESRGAN.
|
||||
|
||||
Args:
|
||||
mid_channels (int): Channel number of intermediate features.
|
||||
growth_channels (int): Channels for each growth.
|
||||
"""
|
||||
|
||||
def __init__(self, mid_channels, growth_channels=32):
|
||||
super(RRDBWithBypass, self).__init__()
|
||||
self.rdb1 = ResidualDenseBlock(mid_channels, growth_channels)
|
||||
self.rdb2 = ResidualDenseBlock(mid_channels, growth_channels)
|
||||
self.rdb3 = ResidualDenseBlock(mid_channels, growth_channels)
|
||||
self.bypass = nn.Sequential(ConvGnSilu(mid_channels*2, mid_channels, kernel_size=3, bias=True, activation=True, norm=True),
|
||||
ConvGnSilu(mid_channels, mid_channels//2, kernel_size=3, bias=False, activation=True, norm=False),
|
||||
ConvGnSilu(mid_channels//2, 1, kernel_size=3, bias=False, activation=False, norm=False),
|
||||
nn.Sigmoid())
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward function.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input tensor with shape (n, c, h, w).
|
||||
|
||||
Returns:
|
||||
Tensor: Forward results.
|
||||
"""
|
||||
out = self.rdb1(x)
|
||||
out = self.rdb2(out)
|
||||
out = self.rdb3(out)
|
||||
bypass = self.bypass(torch.cat([x, out], dim=1))
|
||||
self.bypass_map = bypass.detach().clone()
|
||||
# Emperically, we use 0.2 to scale the residual for better performance
|
||||
return out * 0.2 * bypass + x
|
||||
|
||||
|
||||
class RRDBNet(nn.Module):
|
||||
"""Networks consisting of Residual in Residual Dense Block, which is used
|
||||
in ESRGAN.
|
||||
|
@ -100,11 +141,15 @@ class RRDBNet(nn.Module):
|
|||
out_channels,
|
||||
mid_channels=64,
|
||||
num_blocks=23,
|
||||
growth_channels=32):
|
||||
growth_channels=32,
|
||||
body_block=RRDB,
|
||||
blocks_per_checkpoint=4):
|
||||
super(RRDBNet, self).__init__()
|
||||
self.num_blocks = num_blocks
|
||||
self.blocks_per_checkpoint = blocks_per_checkpoint
|
||||
self.conv_first = nn.Conv2d(in_channels, mid_channels, 3, 1, 1)
|
||||
self.body = make_layer(
|
||||
RRDB,
|
||||
body_block,
|
||||
num_blocks,
|
||||
mid_channels=mid_channels,
|
||||
growth_channels=growth_channels)
|
||||
|
@ -134,7 +179,7 @@ class RRDBNet(nn.Module):
|
|||
"""
|
||||
|
||||
feat = self.conv_first(x)
|
||||
body_feat = self.conv_body(checkpoint_sequential(self.body, 5, feat))
|
||||
body_feat = self.conv_body(checkpoint_sequential(self.body, self.num_blocks // self.blocks_per_checkpoint, feat))
|
||||
feat = feat + body_feat
|
||||
# upsample
|
||||
feat = self.lrelu(
|
||||
|
@ -142,4 +187,9 @@ class RRDBNet(nn.Module):
|
|||
feat = self.lrelu(
|
||||
self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
||||
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
|
||||
return out
|
||||
return out
|
||||
|
||||
def visual_dbg(self, step, path):
|
||||
for i, bm in enumerate(self.body):
|
||||
torchvision.utils.save_image(bm.bypass_map.cpu().float(), os.path.join(path, "%i_bypass_%i.png" % (step, i+1)))
|
||||
|
||||
|
|
|
@ -39,6 +39,10 @@ def define_G(opt, net_key='network_G', scale=None):
|
|||
elif which_model == 'RRDBNet':
|
||||
netG = RRDBNet_arch.RRDBNet(in_channels=opt_net['in_nc'], out_channels=opt_net['out_nc'],
|
||||
mid_channels=opt_net['nf'], num_blocks=opt_net['nb'])
|
||||
elif which_model == 'RRDBNetBypass':
|
||||
netG = RRDBNet_arch.RRDBNet(in_channels=opt_net['in_nc'], out_channels=opt_net['out_nc'],
|
||||
mid_channels=opt_net['nf'], num_blocks=opt_net['nb'], body_block=RRDBNet_arch.RRDBWithBypass,
|
||||
blocks_per_checkpoint=opt_net['blocks_per_checkpoint'])
|
||||
elif which_model == 'rcan':
|
||||
#args: n_resgroups, n_resblocks, res_scale, reduction, scale, n_feats
|
||||
opt_net['rgb_range'] = 255
|
||||
|
|
|
@ -265,7 +265,7 @@ class Trainer:
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_prog_imgset_multifaceted_chained.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_mi1_rrdb4x_6bl_bypass.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
|
|
@ -278,7 +278,7 @@ class Trainer:
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_mi1_tecogen.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_mi1_rrdb4x_10bl_bypass.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
args = parser.parse_args()
|
||||
opt = option.parse(args.opt, is_train=True)
|
||||
|
|
Loading…
Reference in New Issue
Block a user