Get rid of discretization loss
This commit is contained in:
parent
beb7c8a39d
commit
619da9ea28
|
@ -28,46 +28,6 @@ def eval_decorator(fn):
|
||||||
return inner
|
return inner
|
||||||
|
|
||||||
|
|
||||||
# Fits a soft-discretized input to a normal-PDF across the specified dimension.
|
|
||||||
# In other words, attempts to force the discretization function to have a mean equal utilization across all discrete
|
|
||||||
# values with the specified expected variance.
|
|
||||||
class DiscretizationLoss(nn.Module):
|
|
||||||
def __init__(self, discrete_bins, dim, expected_variance, store_past=0):
|
|
||||||
super().__init__()
|
|
||||||
self.discrete_bins = discrete_bins
|
|
||||||
self.dim = dim
|
|
||||||
self.dist = torch.distributions.Normal(0, scale=expected_variance)
|
|
||||||
if store_past > 0:
|
|
||||||
self.record_past = True
|
|
||||||
self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device='cpu'))
|
|
||||||
self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device='cpu'))
|
|
||||||
self.register_buffer("accumulator", torch.zeros(store_past, discrete_bins))
|
|
||||||
else:
|
|
||||||
self.record_past = False
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
other_dims = set(range(len(x.shape)))-set([self.dim])
|
|
||||||
averaged = x.sum(dim=tuple(other_dims)) / x.sum()
|
|
||||||
averaged = averaged - averaged.mean()
|
|
||||||
|
|
||||||
if self.record_past:
|
|
||||||
acc_count = self.accumulator.shape[0]
|
|
||||||
avg = averaged.detach().clone()
|
|
||||||
if self.accumulator_filled > 0:
|
|
||||||
averaged = torch.mean(self.accumulator, dim=0) * (acc_count-1) / acc_count + \
|
|
||||||
averaged / acc_count
|
|
||||||
|
|
||||||
# Also push averaged into the accumulator.
|
|
||||||
self.accumulator[self.accumulator_index] = avg
|
|
||||||
self.accumulator_index += 1
|
|
||||||
if self.accumulator_index >= acc_count:
|
|
||||||
self.accumulator_index *= 0
|
|
||||||
if self.accumulator_filled <= 0:
|
|
||||||
self.accumulator_filled += 1
|
|
||||||
|
|
||||||
return torch.sum(-self.dist.log_prob(averaged))
|
|
||||||
|
|
||||||
|
|
||||||
class ResBlock(nn.Module):
|
class ResBlock(nn.Module):
|
||||||
def __init__(self, chan, conv, activation):
|
def __init__(self, chan, conv, activation):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
@ -115,7 +75,6 @@ class DiscreteVAE(nn.Module):
|
||||||
straight_through = False,
|
straight_through = False,
|
||||||
normalization = None, # ((0.5,) * 3, (0.5,) * 3),
|
normalization = None, # ((0.5,) * 3, (0.5,) * 3),
|
||||||
record_codes = False,
|
record_codes = False,
|
||||||
discretization_loss_averaging_steps = 100,
|
|
||||||
use_lr_quantizer = False,
|
use_lr_quantizer = False,
|
||||||
lr_quantizer_args = {},
|
lr_quantizer_args = {},
|
||||||
):
|
):
|
||||||
|
@ -126,7 +85,6 @@ class DiscreteVAE(nn.Module):
|
||||||
self.num_layers = num_layers
|
self.num_layers = num_layers
|
||||||
self.straight_through = straight_through
|
self.straight_through = straight_through
|
||||||
self.positional_dims = positional_dims
|
self.positional_dims = positional_dims
|
||||||
self.discrete_loss = DiscretizationLoss(num_tokens, 2, 1 / (num_tokens*2), discretization_loss_averaging_steps)
|
|
||||||
|
|
||||||
assert positional_dims > 0 and positional_dims < 3 # This VAE only supports 1d and 2d inputs for now.
|
assert positional_dims > 0 and positional_dims < 3 # This VAE only supports 1d and 2d inputs for now.
|
||||||
if positional_dims == 2:
|
if positional_dims == 2:
|
||||||
|
|
Loading…
Reference in New Issue
Block a user