PixDisc - Add two more levels of losses coming from this gen at higher resolutions

This commit is contained in:
James Betker 2020-07-06 11:15:52 -06:00
parent 2636d3b620
commit 6beefa6d0c

View File

@ -2,6 +2,7 @@ import torch
import torch.nn as nn
import torchvision
from models.archs.arch_util import ConvBnLelu
import torch.nn.functional as F
class Discriminator_VGG_128(nn.Module):
@ -109,30 +110,61 @@ class Discriminator_VGG_PixLoss(nn.Module):
self.reduce_1 = ConvBnLelu(nf * 8, nf * 4, bias=False)
self.pix_loss_collapse = ConvBnLelu(nf * 4, 1, bias=False, bn=False, lelu=False)
# Pyramid network: upsample with residuals and produce losses at multiple resolutions.
self.up3_decimate = ConvBnLelu(nf * 8, nf * 8, kernel_size=3, bias=True, lelu=False)
self.up3_converge = ConvBnLelu(nf * 16, nf * 8, kernel_size=3, bias=False)
self.up3_proc = ConvBnLelu(nf * 8, nf * 8, bias=False)
self.up3_reduce = ConvBnLelu(nf * 8, nf * 4, bias=False)
self.up3_pix = ConvBnLelu(nf * 4, 1, bias=False, bn=False, lelu=False)
self.up2_decimate = ConvBnLelu(nf * 8, nf * 4, kernel_size=1, bias=True, lelu=False)
self.up2_converge = ConvBnLelu(nf * 8, nf * 4, kernel_size=3, bias=False)
self.up2_proc = ConvBnLelu(nf * 4, nf * 4, bias=False)
self.up2_reduce = ConvBnLelu(nf * 4, nf * 2, bias=False)
self.up2_pix = ConvBnLelu(nf * 2, 1, bias=False, bn=False, lelu=False)
# activation function
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
x = x[0]
fea = self.lrelu(self.conv0_0(x))
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
fea0 = self.lrelu(self.conv0_0(x))
fea0 = self.lrelu(self.bn0_1(self.conv0_1(fea0)))
fea = self.lrelu(self.bn1_0(self.conv1_0(fea)))
fea = self.lrelu(self.bn1_1(self.conv1_1(fea)))
fea1 = self.lrelu(self.bn1_0(self.conv1_0(fea0)))
fea1 = self.lrelu(self.bn1_1(self.conv1_1(fea1)))
fea = self.lrelu(self.bn2_0(self.conv2_0(fea)))
fea = self.lrelu(self.bn2_1(self.conv2_1(fea)))
fea2 = self.lrelu(self.bn2_0(self.conv2_0(fea1)))
fea2 = self.lrelu(self.bn2_1(self.conv2_1(fea2)))
fea = self.lrelu(self.bn3_0(self.conv3_0(fea)))
fea = self.lrelu(self.bn3_1(self.conv3_1(fea)))
fea3 = self.lrelu(self.bn3_0(self.conv3_0(fea2)))
fea3 = self.lrelu(self.bn3_1(self.conv3_1(fea3)))
fea = self.lrelu(self.bn4_0(self.conv4_0(fea)))
fea = self.lrelu(self.bn4_1(self.conv4_1(fea)))
loss = self.reduce_1(fea)
loss = self.pix_loss_collapse(loss)
fea4 = self.lrelu(self.bn4_0(self.conv4_0(fea3)))
fea4 = self.lrelu(self.bn4_1(self.conv4_1(fea4)))
loss = self.reduce_1(fea4)
# Compress all of the loss values into the batch dimension. The actual loss attached to this output will
# then know how to handle them.
return loss.view(-1, 1)
loss = self.pix_loss_collapse(loss).view(-1, 1)
# And the pyramid network!
dec3 = self.up3_decimate(F.interpolate(fea4, scale_factor=2, mode="nearest"))
dec3 = torch.cat([dec3, fea3], dim=1)
dec3 = self.up3_converge(dec3)
dec3 = self.up3_proc(dec3)
loss3 = self.up3_reduce(dec3)
loss3 = self.up3_pix(loss3).view(-1, 1)
dec2 = self.up2_decimate(F.interpolate(dec3, scale_factor=2, mode="nearest"))
dec2 = torch.cat([dec2, fea2], dim=1)
dec2 = self.up2_converge(dec2)
dec2 = self.up2_proc(dec2)
loss2 = self.up2_reduce(dec2)
loss2 = self.up2_pix(loss2).view(-1, 1)
# "Weight" all losses the same by repeating the LR losses to the HR dim.
combined_losses = torch.cat([loss.repeat((16, 1)), loss3.repeat((4, 1)), loss2])
return combined_losses.view(-1, 1)