nv_tacotron_dataset: allow it to load conditioning signals
This commit is contained in:
parent
07b0124712
commit
702607556d
|
@ -11,6 +11,7 @@ from tqdm import tqdm
|
|||
|
||||
import models.tacotron2.layers as layers
|
||||
from data.audio.unsupervised_audio_dataset import load_audio
|
||||
from data.util import find_files_of_type, is_audio_file
|
||||
from models.tacotron2.taco_utils import load_wav_to_torch, load_filepaths_and_text
|
||||
|
||||
from models.tacotron2.text import text_to_sequence
|
||||
|
@ -50,13 +51,18 @@ class TextWavLoader(torch.utils.data.Dataset):
|
|||
fetcher_mode = [fetcher_mode]
|
||||
assert len(self.path) == len(fetcher_mode)
|
||||
|
||||
self.load_conditioning = opt_get(hparams, ['load_conditioning'], False)
|
||||
self.conditioning_candidates = opt_get(hparams, ['num_conditioning_candidates'], 3)
|
||||
self.conditioning_length = opt_get(hparams, ['conditioning_length'], 44100)
|
||||
self.audiopaths_and_text = []
|
||||
for p, fm in zip(self.path, fetcher_mode):
|
||||
if fm == 'lj' or fm == 'libritts':
|
||||
fetcher_fn = load_filepaths_and_text
|
||||
elif fm == 'mozilla_cv':
|
||||
assert not self.load_conditioning # Conditioning inputs are incompatible with mozilla_cv
|
||||
fetcher_fn = load_mozilla_cv
|
||||
elif fm == 'voxpopuli':
|
||||
assert not self.load_conditioning # Conditioning inputs are incompatible with voxpopuli
|
||||
fetcher_fn = load_voxpopuli
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
@ -83,12 +89,32 @@ class TextWavLoader(torch.utils.data.Dataset):
|
|||
text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
|
||||
return text_norm
|
||||
|
||||
def load_conditioning_candidates(self, path):
|
||||
candidates = find_files_of_type('img', os.path.dirname(path), qualifier=is_audio_file)[0]
|
||||
assert len(candidates) < 50000 # Sanity check to ensure we aren't loading "related files" that aren't actually related.
|
||||
if len(candidates) == 0:
|
||||
print(f"No conditioning candidates found for {path} (not even the clip itself??)")
|
||||
raise NotImplementedError()
|
||||
# Sample with replacement. This can get repeats, but more conveniently handles situations where there are not enough candidates.
|
||||
related_clips = []
|
||||
for k in range(self.conditioning_candidates):
|
||||
rel_clip = load_audio(random.choice(candidates), self.sample_rate)
|
||||
gap = rel_clip.shape[-1] - self.conditioning_length
|
||||
if gap < 0:
|
||||
rel_clip = F.pad(rel_clip, pad=(0, abs(gap)))
|
||||
elif gap > 0:
|
||||
rand_start = random.randint(0, gap)
|
||||
rel_clip = rel_clip[:, rand_start:rand_start+self.conditioning_length]
|
||||
related_clips.append(rel_clip)
|
||||
return torch.stack(related_clips, dim=0)
|
||||
|
||||
def __getitem__(self, index):
|
||||
try:
|
||||
#try:
|
||||
tseq, wav, text, path = self.get_wav_text_pair(self.audiopaths_and_text[index])
|
||||
except:
|
||||
print(f"error loadding {self.audiopaths_and_text[index][0]}")
|
||||
return self[index+1]
|
||||
cond = self.load_conditioning_candidates(self.audiopaths_and_text[index][0]) if self.load_conditioning else None
|
||||
#except:
|
||||
# print(f"error loading {self.audiopaths_and_text[index][0]}")
|
||||
# return self[index+1]
|
||||
if wav is None or \
|
||||
(self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) or \
|
||||
(self.max_text_len is not None and tseq.shape[0] > self.max_text_len):
|
||||
|
@ -105,7 +131,7 @@ class TextWavLoader(torch.utils.data.Dataset):
|
|||
wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1]))
|
||||
if tseq.shape[0] != self.max_text_len:
|
||||
tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0]))
|
||||
return {
|
||||
res = {
|
||||
'real_text': text,
|
||||
'padded_text': tseq,
|
||||
'text_lengths': torch.tensor(orig_text_len, dtype=torch.long),
|
||||
|
@ -113,7 +139,10 @@ class TextWavLoader(torch.utils.data.Dataset):
|
|||
'wav_lengths': torch.tensor(orig_output, dtype=torch.long),
|
||||
'filenames': path
|
||||
}
|
||||
return tseq, wav, path, text
|
||||
if self.load_conditioning:
|
||||
res['conditioning'] = cond
|
||||
return res
|
||||
return tseq, wav, path, text, cond
|
||||
|
||||
def __len__(self):
|
||||
return len(self.audiopaths_and_text)
|
||||
|
@ -138,11 +167,15 @@ class TextMelCollate():
|
|||
text_padded.zero_()
|
||||
filenames = []
|
||||
real_text = []
|
||||
conds = []
|
||||
for i in range(len(ids_sorted_decreasing)):
|
||||
text = batch[ids_sorted_decreasing[i]][0]
|
||||
text_padded[i, :text.size(0)] = text
|
||||
filenames.append(batch[ids_sorted_decreasing[i]][2])
|
||||
real_text.append(batch[ids_sorted_decreasing[i]][3])
|
||||
c = batch[ids_sorted_decreasing[i]][4]
|
||||
if c is not None:
|
||||
conds.append(c)
|
||||
|
||||
# Right zero-pad wav
|
||||
num_wavs = batch[0][1].size(0)
|
||||
|
@ -157,7 +190,7 @@ class TextMelCollate():
|
|||
wav_padded[i, :, :wav.size(1)] = wav
|
||||
output_lengths[i] = wav.size(1)
|
||||
|
||||
return {
|
||||
res = {
|
||||
'padded_text': text_padded,
|
||||
'text_lengths': input_lengths,
|
||||
'wav': wav_padded,
|
||||
|
@ -165,21 +198,25 @@ class TextMelCollate():
|
|||
'filenames': filenames,
|
||||
'real_text': real_text,
|
||||
}
|
||||
if len(conds) > 0:
|
||||
res['conditioning'] = torch.stack(conds)
|
||||
return res
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
batch_sz = 32
|
||||
batch_sz = 8
|
||||
params = {
|
||||
'mode': 'nv_tacotron',
|
||||
'path': ['Z:\\bigasr_dataset\\libritts\\test-clean_list.txt'],
|
||||
'phase': 'train',
|
||||
'n_workers': 1,
|
||||
'n_workers': 0,
|
||||
'batch_size': batch_sz,
|
||||
'fetcher_mode': ['libritts'],
|
||||
'needs_collate': True,
|
||||
'max_wav_length': 256000,
|
||||
'max_text_length': 200,
|
||||
'sample_rate': 22050,
|
||||
'load_conditioning': True,
|
||||
}
|
||||
from data import create_dataset, create_dataloader
|
||||
|
||||
|
@ -187,9 +224,12 @@ if __name__ == '__main__':
|
|||
dl = create_dataloader(ds, params, collate_fn=c)
|
||||
i = 0
|
||||
m = None
|
||||
for k in range(1000):
|
||||
for i, b in tqdm(enumerate(dl)):
|
||||
if i > 5:
|
||||
break
|
||||
w = b['wav']
|
||||
for ib in range(batch_sz):
|
||||
print(f'{i} {ib} {b["real_text"][ib]}')
|
||||
torchaudio.save(f'{i}_clip_{ib}.wav', b['wav'][ib], ds.sample_rate)
|
||||
for c in range(3):
|
||||
torchaudio.save(f'{i}_clip_{ib}_cond{c}.wav', b['conditioning'][ib, c], ds.sample_rate)
|
||||
|
|
Loading…
Reference in New Issue
Block a user