Alter unified_voice to use extensible transformer (still WIP)

This commit is contained in:
James Betker 2022-01-08 22:18:25 -07:00
parent 15d9517e26
commit 70b17da193
2 changed files with 73 additions and 21 deletions

View File

@ -0,0 +1,70 @@
"""
A list of functions that map a unified set of arguments to a fully built transformer. Also includes some testing
utilities for measuring parameter count, FLOPS, and general performance of each type.
Every function contains the following arguments:
layers: Net number of layers in the transformer.
model_dim: Hidden dimensionality of the model.
heads: Number of attention heads.
num_tokens: Number of possible tokens in the transformer's dictionary. Do not use this in future releases.
max_seq_len: Maximum sequence length to attend to.
checkpointing: Whether or not the underlying implementation should support gradient checkpointing.
"""
import functools
import torch
def null_position_embeddings(range, dim):
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
def build_hf_gpt_transformer(layers, model_dim, heads, num_tokens, max_seq_len, checkpointing):
"""
GPT-2 implemented by the HuggingFace library.
"""
from transformers import GPT2Config, GPT2Model
gpt_config = GPT2Config(vocab_size=num_tokens,
n_positions=max_seq_len,
n_ctx=max_seq_len,
n_embd=model_dim,
n_layer=layers,
n_head=heads,
gradient_checkpointing=checkpointing,
use_cache=not checkpointing)
gpt = GPT2Model(gpt_config)
# Override the built in positional embeddings
del gpt.wpe
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
return gpt
def build_lr_performer(layers, model_dim, heads, num_tokens, max_seq_len, checkpointing):
"""
lucidrains Performer implementation, https://github.com/lucidrains/performer-pytorch
"""
pass
def build_lr_reformer(layers, model_dim, heads, num_tokens, max_seq_len, checkpointing):
"""
lucidrains Reformer implementation, https://github.com/lucidrains/reformer-pytorch
"""
pass
def build_lr_xformer(layers, model_dim, heads, num_tokens, max_seq_len, checkpointing):
"""
lucidrains x-transformer implementation, https://github.com/lucidrains/x-transformers
"""
pass
def test_all_performance(**kwargs):
transformer_builders = [build_hf_gpt_transformer, build_lr_performer, build_lr_reformer, build_lr_xformer]
for builder in transformer_builders:
model = builder(**kwargs)
if __name__ == '__main__':
test_all_performance(12, 512, 8, 8192, 1000, False)

View File

@ -8,6 +8,7 @@ from transformers import GPT2Model, GPT2Config
from models.arch_util import AttentionBlock
from models.gpt_voice.gpt_asr_hf import GPT2InferenceModel
from models.gpt_voice.gpt_asr_hf2 import ResBlock
from models.gpt_voice.transformer_builders import build_hf_gpt_transformer
from models.tacotron2.text import symbols
from trainer.networks import register_model
from utils.util import opt_get
@ -59,22 +60,6 @@ class MelEncoder(nn.Module):
return x.permute(0,2,1)
def null_position_embeddings(range, dim):
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
def build_hf_gpt_transformer(layers, model_dim, heads, num_tokens, max_seq_len, checkpointing):
gpt_config = GPT2Config(vocab_size=num_tokens,
n_positions=max_seq_len,
n_ctx=max_seq_len,
n_embd=model_dim,
n_layer=layers,
n_head=heads,
gradient_checkpointing=checkpointing,
use_cache=not checkpointing)
return GPT2Model(gpt_config)
class UnifiedGptVoice(nn.Module):
"""
Derived from GptTtsHf, but offers multiple modes of autoregressive operation:
@ -133,14 +118,11 @@ class UnifiedGptVoice(nn.Module):
self.seq_length = 4+max_text_tokens+self.max_mel_tokens+self.max_conditioning_inputs
self.gpt = build_hf_gpt_transformer(layers, model_dim, heads, number_mel_codes, self.seq_length, checkpointing)
if train_solo_embeddings:
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * self.gpt.config.initializer_range, requires_grad=True)
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * self.gpt.config.initializer_range, requires_grad=True)
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
else:
self.mel_solo_embedding = 0
self.text_solo_embedding = 0
# Override the built in positional embeddings
del self.gpt.wpe
self.gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
if not use_mel_codes_as_input:
self.gpt.wte = MelEncoder(model_dim, resblocks_per_reduction=1)