Allow validating in batches, remove val size limit

This commit is contained in:
James Betker 2020-06-02 08:41:22 -06:00
parent 90125f5bed
commit 726d1913ac
3 changed files with 28 additions and 110 deletions

View File

@ -448,13 +448,13 @@ class SRGANModel(BaseModel):
def get_current_visuals(self, need_GT=True): def get_current_visuals(self, need_GT=True):
out_dict = OrderedDict() out_dict = OrderedDict()
out_dict['LQ'] = self.var_L[0].detach()[0].float().cpu() out_dict['LQ'] = self.var_L[0].detach().float().cpu()
gen_batch = self.fake_GenOut[0] gen_batch = self.fake_GenOut[0]
if isinstance(gen_batch, tuple): if isinstance(gen_batch, tuple):
gen_batch = gen_batch[0] gen_batch = gen_batch[0]
out_dict['rlt'] = gen_batch.detach()[0].float().cpu() out_dict['rlt'] = gen_batch.detach().float().cpu()
if need_GT: if need_GT:
out_dict['GT'] = self.var_H[0].detach()[0].float().cpu() out_dict['GT'] = self.var_H[0].detach().float().cpu()
return out_dict return out_dict
def print_network(self): def print_network(self):

View File

@ -144,10 +144,10 @@ class SRModel(BaseModel):
def get_current_visuals(self, need_GT=True): def get_current_visuals(self, need_GT=True):
out_dict = OrderedDict() out_dict = OrderedDict()
out_dict['LQ'] = self.var_L.detach()[0].float().cpu() out_dict['LQ'] = self.var_L.detach().float().cpu()
out_dict['rlt'] = self.fake_H.detach()[0].float().cpu() out_dict['rlt'] = self.fake_H.detach().float().cpu()
if need_GT: if need_GT:
out_dict['GT'] = self.real_H.detach()[0].float().cpu() out_dict['GT'] = self.real_H.detach().float().cpu()
return out_dict return out_dict
def print_network(self): def print_network(self):

View File

@ -30,7 +30,7 @@ def init_dist(backend='nccl', **kwargs):
def main(): def main():
#### options #### options
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imset_pre_rrdb.yml') parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_cifar_rrdb.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
help='job launcher') help='job launcher')
parser.add_argument('--local_rank', type=int, default=0) parser.add_argument('--local_rank', type=int, default=0)
@ -204,38 +204,38 @@ def main():
if opt['datasets'].get('val', None) and current_step % opt['train']['val_freq'] == 0: if opt['datasets'].get('val', None) and current_step % opt['train']['val_freq'] == 0:
if opt['model'] in ['sr', 'srgan', 'corruptgan'] and rank <= 0: # image restoration validation if opt['model'] in ['sr', 'srgan', 'corruptgan'] and rank <= 0: # image restoration validation
model.force_restore_swapout() model.force_restore_swapout()
val_batch_sz = 1 if 'batch_size' not in opt['datasets']['val'].keys() else opt['datasets']['val']['batch_size']
# does not support multi-GPU validation # does not support multi-GPU validation
pbar = util.ProgressBar(len(val_loader)) pbar = util.ProgressBar(len(val_loader) * val_batch_sz)
avg_psnr = 0. avg_psnr = 0.
idx = 0 idx = 0
colab_imgs_to_copy = [] colab_imgs_to_copy = []
for val_data in val_loader: for val_data in val_loader:
idx += 1 idx += 1
if idx >= 20: for b in range(len(val_data['LQ_path'])):
break img_name = os.path.splitext(os.path.basename(val_data['LQ_path'][b]))[0]
img_name = os.path.splitext(os.path.basename(val_data['LQ_path'][0]))[0] img_dir = os.path.join(opt['path']['val_images'], img_name)
img_dir = os.path.join(opt['path']['val_images'], img_name) util.mkdir(img_dir)
util.mkdir(img_dir)
model.feed_data(val_data) model.feed_data(val_data)
model.test() model.test()
visuals = model.get_current_visuals() visuals = model.get_current_visuals()
sr_img = util.tensor2img(visuals['rlt']) # uint8 sr_img = util.tensor2img(visuals['rlt'][b]) # uint8
gt_img = util.tensor2img(visuals['GT']) # uint8 gt_img = util.tensor2img(visuals['GT'][b]) # uint8
# Save SR images for reference # Save SR images for reference
img_base_name = '{:s}_{:d}.png'.format(img_name, current_step) img_base_name = '{:s}_{:d}.png'.format(img_name, current_step)
save_img_path = os.path.join(img_dir, img_base_name) save_img_path = os.path.join(img_dir, img_base_name)
util.save_img(sr_img, save_img_path) util.save_img(sr_img, save_img_path)
if colab_mode: if colab_mode:
colab_imgs_to_copy.append(save_img_path) colab_imgs_to_copy.append(save_img_path)
# calculate PSNR # calculate PSNR
sr_img, gt_img = util.crop_border([sr_img, gt_img], opt['scale']) sr_img, gt_img = util.crop_border([sr_img, gt_img], opt['scale'])
avg_psnr += util.calculate_psnr(sr_img, gt_img) avg_psnr += util.calculate_psnr(sr_img, gt_img)
pbar.update('Test {}'.format(img_name)) pbar.update('Test {}'.format(img_name))
if colab_mode: if colab_mode:
util.copy_files_to_server(opt['ssh_server'], opt['ssh_username'], opt['ssh_password'], util.copy_files_to_server(opt['ssh_server'], opt['ssh_username'], opt['ssh_password'],
@ -249,88 +249,6 @@ def main():
# tensorboard logger # tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']: if opt['use_tb_logger'] and 'debug' not in opt['name']:
tb_logger.add_scalar('psnr', avg_psnr, current_step) tb_logger.add_scalar('psnr', avg_psnr, current_step)
else: # video restoration validation
if opt['dist']:
# multi-GPU testing
psnr_rlt = {} # with border and center frames
if rank == 0:
pbar = util.ProgressBar(len(val_set))
for idx in range(rank, len(val_set), world_size):
val_data = val_set[idx]
val_data['LQs'].unsqueeze_(0)
val_data['GT'].unsqueeze_(0)
folder = val_data['folder']
idx_d, max_idx = val_data['idx'].split('/')
idx_d, max_idx = int(idx_d), int(max_idx)
if psnr_rlt.get(folder, None) is None:
psnr_rlt[folder] = torch.zeros(max_idx, dtype=torch.float32,
device='cuda')
# tmp = torch.zeros(max_idx, dtype=torch.float32, device='cuda')
model.feed_data(val_data)
model.test()
visuals = model.get_current_visuals()
rlt_img = util.tensor2img(visuals['rlt']) # uint8
gt_img = util.tensor2img(visuals['GT']) # uint8
# calculate PSNR
psnr_rlt[folder][idx_d] = util.calculate_psnr(rlt_img, gt_img)
if rank == 0:
for _ in range(world_size):
pbar.update('Test {} - {}/{}'.format(folder, idx_d, max_idx))
# # collect data
for _, v in psnr_rlt.items():
dist.reduce(v, 0)
dist.barrier()
if rank == 0:
psnr_rlt_avg = {}
psnr_total_avg = 0.
for k, v in psnr_rlt.items():
psnr_rlt_avg[k] = torch.mean(v).cpu().item()
psnr_total_avg += psnr_rlt_avg[k]
psnr_total_avg /= len(psnr_rlt)
log_s = '# Validation # PSNR: {:.4e}:'.format(psnr_total_avg)
for k, v in psnr_rlt_avg.items():
log_s += ' {}: {:.4e}'.format(k, v)
logger.info(log_s)
if opt['use_tb_logger'] and 'debug' not in opt['name']:
tb_logger.add_scalar('psnr_avg', psnr_total_avg, current_step)
for k, v in psnr_rlt_avg.items():
tb_logger.add_scalar(k, v, current_step)
else:
pbar = util.ProgressBar(len(val_loader))
psnr_rlt = {} # with border and center frames
psnr_rlt_avg = {}
psnr_total_avg = 0.
for val_data in val_loader:
folder = val_data['folder'][0]
idx_d = val_data['idx'].item()
# border = val_data['border'].item()
if psnr_rlt.get(folder, None) is None:
psnr_rlt[folder] = []
model.feed_data(val_data)
model.test()
visuals = model.get_current_visuals()
rlt_img = util.tensor2img(visuals['rlt']) # uint8
gt_img = util.tensor2img(visuals['GT']) # uint8
# calculate PSNR
psnr = util.calculate_psnr(rlt_img, gt_img)
psnr_rlt[folder].append(psnr)
pbar.update('Test {} - {}'.format(folder, idx_d))
for k, v in psnr_rlt.items():
psnr_rlt_avg[k] = sum(v) / len(v)
psnr_total_avg += psnr_rlt_avg[k]
psnr_total_avg /= len(psnr_rlt)
log_s = '# Validation # PSNR: {:.4e}:'.format(psnr_total_avg)
for k, v in psnr_rlt_avg.items():
log_s += ' {}: {:.4e}'.format(k, v)
logger.info(log_s)
if opt['use_tb_logger'] and 'debug' not in opt['name']:
tb_logger.add_scalar('psnr_avg', psnr_total_avg, current_step)
for k, v in psnr_rlt_avg.items():
tb_logger.add_scalar(k, v, current_step)
#### save models and training states #### save models and training states
if current_step % opt['logger']['save_checkpoint_freq'] == 0: if current_step % opt['logger']['save_checkpoint_freq'] == 0: