Allow validating in batches, remove val size limit
This commit is contained in:
parent
90125f5bed
commit
726d1913ac
|
@ -448,13 +448,13 @@ class SRGANModel(BaseModel):
|
|||
|
||||
def get_current_visuals(self, need_GT=True):
|
||||
out_dict = OrderedDict()
|
||||
out_dict['LQ'] = self.var_L[0].detach()[0].float().cpu()
|
||||
out_dict['LQ'] = self.var_L[0].detach().float().cpu()
|
||||
gen_batch = self.fake_GenOut[0]
|
||||
if isinstance(gen_batch, tuple):
|
||||
gen_batch = gen_batch[0]
|
||||
out_dict['rlt'] = gen_batch.detach()[0].float().cpu()
|
||||
out_dict['rlt'] = gen_batch.detach().float().cpu()
|
||||
if need_GT:
|
||||
out_dict['GT'] = self.var_H[0].detach()[0].float().cpu()
|
||||
out_dict['GT'] = self.var_H[0].detach().float().cpu()
|
||||
return out_dict
|
||||
|
||||
def print_network(self):
|
||||
|
|
|
@ -144,10 +144,10 @@ class SRModel(BaseModel):
|
|||
|
||||
def get_current_visuals(self, need_GT=True):
|
||||
out_dict = OrderedDict()
|
||||
out_dict['LQ'] = self.var_L.detach()[0].float().cpu()
|
||||
out_dict['rlt'] = self.fake_H.detach()[0].float().cpu()
|
||||
out_dict['LQ'] = self.var_L.detach().float().cpu()
|
||||
out_dict['rlt'] = self.fake_H.detach().float().cpu()
|
||||
if need_GT:
|
||||
out_dict['GT'] = self.real_H.detach()[0].float().cpu()
|
||||
out_dict['GT'] = self.real_H.detach().float().cpu()
|
||||
return out_dict
|
||||
|
||||
def print_network(self):
|
||||
|
|
|
@ -30,7 +30,7 @@ def init_dist(backend='nccl', **kwargs):
|
|||
def main():
|
||||
#### options
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imset_pre_rrdb.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_cifar_rrdb.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
|
||||
help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
|
@ -204,16 +204,16 @@ def main():
|
|||
if opt['datasets'].get('val', None) and current_step % opt['train']['val_freq'] == 0:
|
||||
if opt['model'] in ['sr', 'srgan', 'corruptgan'] and rank <= 0: # image restoration validation
|
||||
model.force_restore_swapout()
|
||||
val_batch_sz = 1 if 'batch_size' not in opt['datasets']['val'].keys() else opt['datasets']['val']['batch_size']
|
||||
# does not support multi-GPU validation
|
||||
pbar = util.ProgressBar(len(val_loader))
|
||||
pbar = util.ProgressBar(len(val_loader) * val_batch_sz)
|
||||
avg_psnr = 0.
|
||||
idx = 0
|
||||
colab_imgs_to_copy = []
|
||||
for val_data in val_loader:
|
||||
idx += 1
|
||||
if idx >= 20:
|
||||
break
|
||||
img_name = os.path.splitext(os.path.basename(val_data['LQ_path'][0]))[0]
|
||||
for b in range(len(val_data['LQ_path'])):
|
||||
img_name = os.path.splitext(os.path.basename(val_data['LQ_path'][b]))[0]
|
||||
img_dir = os.path.join(opt['path']['val_images'], img_name)
|
||||
util.mkdir(img_dir)
|
||||
|
||||
|
@ -222,8 +222,8 @@ def main():
|
|||
|
||||
visuals = model.get_current_visuals()
|
||||
|
||||
sr_img = util.tensor2img(visuals['rlt']) # uint8
|
||||
gt_img = util.tensor2img(visuals['GT']) # uint8
|
||||
sr_img = util.tensor2img(visuals['rlt'][b]) # uint8
|
||||
gt_img = util.tensor2img(visuals['GT'][b]) # uint8
|
||||
|
||||
# Save SR images for reference
|
||||
img_base_name = '{:s}_{:d}.png'.format(img_name, current_step)
|
||||
|
@ -249,88 +249,6 @@ def main():
|
|||
# tensorboard logger
|
||||
if opt['use_tb_logger'] and 'debug' not in opt['name']:
|
||||
tb_logger.add_scalar('psnr', avg_psnr, current_step)
|
||||
else: # video restoration validation
|
||||
if opt['dist']:
|
||||
# multi-GPU testing
|
||||
psnr_rlt = {} # with border and center frames
|
||||
if rank == 0:
|
||||
pbar = util.ProgressBar(len(val_set))
|
||||
for idx in range(rank, len(val_set), world_size):
|
||||
val_data = val_set[idx]
|
||||
val_data['LQs'].unsqueeze_(0)
|
||||
val_data['GT'].unsqueeze_(0)
|
||||
folder = val_data['folder']
|
||||
idx_d, max_idx = val_data['idx'].split('/')
|
||||
idx_d, max_idx = int(idx_d), int(max_idx)
|
||||
if psnr_rlt.get(folder, None) is None:
|
||||
psnr_rlt[folder] = torch.zeros(max_idx, dtype=torch.float32,
|
||||
device='cuda')
|
||||
# tmp = torch.zeros(max_idx, dtype=torch.float32, device='cuda')
|
||||
model.feed_data(val_data)
|
||||
model.test()
|
||||
visuals = model.get_current_visuals()
|
||||
rlt_img = util.tensor2img(visuals['rlt']) # uint8
|
||||
gt_img = util.tensor2img(visuals['GT']) # uint8
|
||||
# calculate PSNR
|
||||
psnr_rlt[folder][idx_d] = util.calculate_psnr(rlt_img, gt_img)
|
||||
|
||||
if rank == 0:
|
||||
for _ in range(world_size):
|
||||
pbar.update('Test {} - {}/{}'.format(folder, idx_d, max_idx))
|
||||
# # collect data
|
||||
for _, v in psnr_rlt.items():
|
||||
dist.reduce(v, 0)
|
||||
dist.barrier()
|
||||
|
||||
if rank == 0:
|
||||
psnr_rlt_avg = {}
|
||||
psnr_total_avg = 0.
|
||||
for k, v in psnr_rlt.items():
|
||||
psnr_rlt_avg[k] = torch.mean(v).cpu().item()
|
||||
psnr_total_avg += psnr_rlt_avg[k]
|
||||
psnr_total_avg /= len(psnr_rlt)
|
||||
log_s = '# Validation # PSNR: {:.4e}:'.format(psnr_total_avg)
|
||||
for k, v in psnr_rlt_avg.items():
|
||||
log_s += ' {}: {:.4e}'.format(k, v)
|
||||
logger.info(log_s)
|
||||
if opt['use_tb_logger'] and 'debug' not in opt['name']:
|
||||
tb_logger.add_scalar('psnr_avg', psnr_total_avg, current_step)
|
||||
for k, v in psnr_rlt_avg.items():
|
||||
tb_logger.add_scalar(k, v, current_step)
|
||||
else:
|
||||
pbar = util.ProgressBar(len(val_loader))
|
||||
psnr_rlt = {} # with border and center frames
|
||||
psnr_rlt_avg = {}
|
||||
psnr_total_avg = 0.
|
||||
for val_data in val_loader:
|
||||
folder = val_data['folder'][0]
|
||||
idx_d = val_data['idx'].item()
|
||||
# border = val_data['border'].item()
|
||||
if psnr_rlt.get(folder, None) is None:
|
||||
psnr_rlt[folder] = []
|
||||
|
||||
model.feed_data(val_data)
|
||||
model.test()
|
||||
visuals = model.get_current_visuals()
|
||||
rlt_img = util.tensor2img(visuals['rlt']) # uint8
|
||||
gt_img = util.tensor2img(visuals['GT']) # uint8
|
||||
|
||||
# calculate PSNR
|
||||
psnr = util.calculate_psnr(rlt_img, gt_img)
|
||||
psnr_rlt[folder].append(psnr)
|
||||
pbar.update('Test {} - {}'.format(folder, idx_d))
|
||||
for k, v in psnr_rlt.items():
|
||||
psnr_rlt_avg[k] = sum(v) / len(v)
|
||||
psnr_total_avg += psnr_rlt_avg[k]
|
||||
psnr_total_avg /= len(psnr_rlt)
|
||||
log_s = '# Validation # PSNR: {:.4e}:'.format(psnr_total_avg)
|
||||
for k, v in psnr_rlt_avg.items():
|
||||
log_s += ' {}: {:.4e}'.format(k, v)
|
||||
logger.info(log_s)
|
||||
if opt['use_tb_logger'] and 'debug' not in opt['name']:
|
||||
tb_logger.add_scalar('psnr_avg', psnr_total_avg, current_step)
|
||||
for k, v in psnr_rlt_avg.items():
|
||||
tb_logger.add_scalar(k, v, current_step)
|
||||
|
||||
#### save models and training states
|
||||
if current_step % opt['logger']['save_checkpoint_freq'] == 0:
|
||||
|
|
Loading…
Reference in New Issue
Block a user