PyramidRRDB net

This commit is contained in:
James Betker 2020-11-11 11:25:49 -07:00
parent a1760f8969
commit 72762f200c
4 changed files with 31 additions and 2 deletions

View File

@ -116,7 +116,7 @@ class RRDBWithBypass(nn.Module):
out = self.rdb3(out) out = self.rdb3(out)
bypass = self.bypass(torch.cat([x, out], dim=1)) bypass = self.bypass(torch.cat([x, out], dim=1))
self.bypass_map = bypass.detach().clone() self.bypass_map = bypass.detach().clone()
# Emperically, we use 0.2 to scale the residual for better performance # Empirically, we use 0.2 to scale the residual for better performance
return out * 0.2 * bypass + x return out * 0.2 * bypass + x

View File

@ -1,8 +1,11 @@
import torch import torch
import torch.nn as nn import torch.nn as nn
from models.archs.RRDBNet_arch import RRDB, RRDBWithBypass
from models.archs.arch_util import ConvBnLelu, ConvGnLelu, ExpansionBlock, ConvGnSilu from models.archs.arch_util import ConvBnLelu, ConvGnLelu, ExpansionBlock, ConvGnSilu
import torch.nn.functional as F import torch.nn.functional as F
from models.archs.SwitchedResidualGenerator_arch import gather_2d from models.archs.SwitchedResidualGenerator_arch import gather_2d
from models.archs.pyramid_arch import Pyramid
from utils.util import checkpoint from utils.util import checkpoint
@ -78,6 +81,7 @@ class Discriminator_VGG_128(nn.Module):
out = self.linear2(fea) out = self.linear2(fea)
return out return out
class Discriminator_VGG_128_GN(nn.Module): class Discriminator_VGG_128_GN(nn.Module):
# input_img_factor = multiplier to support images over 128x128. Only certain factors are supported. # input_img_factor = multiplier to support images over 128x128. Only certain factors are supported.
def __init__(self, in_nc, nf, input_img_factor=1, do_checkpointing=False): def __init__(self, in_nc, nf, input_img_factor=1, do_checkpointing=False):
@ -656,3 +660,26 @@ class SingleImageQualityEstimator(nn.Module):
fea = self.lrelu(self.conv4_2(fea)) fea = self.lrelu(self.conv4_2(fea))
fea = self.sigmoid(self.conv4_3(fea)) fea = self.sigmoid(self.conv4_3(fea))
return fea return fea
class PyramidRRDBDiscriminator(nn.Module):
def __init__(self, in_nc, nf, block=ConvGnLelu):
super(PyramidRRDBDiscriminator, self).__init__()
self.initial_conv = block(in_nc, nf, kernel_size=3, stride=2, bias=True, norm=False, activation=True)
self.top_proc = nn.Sequential(*[RRDBWithBypass(nf),
RRDBWithBypass(nf)])
self.pyramid = Pyramid(nf, depth=3, processing_convs_per_layer=2, processing_at_point=2,
scale_per_level=1.5, norm=True, return_outlevels=False)
self.bottom_proc = nn.Sequential(*[RRDBWithBypass(nf),
RRDBWithBypass(nf),
ConvGnLelu(nf, nf // 2, kernel_size=1, activation=True, norm=True, bias=True),
ConvGnLelu(nf // 2, nf // 4, kernel_size=1, activation=True, norm=True, bias=True),
ConvGnLelu(nf // 4, 1, activation=False, norm=False, bias=True)])
def forward(self, x):
fea = self.initial_conv(x)
fea = checkpoint(self.top_proc, fea)
fea = checkpoint(self.pyramid, fea)
fea = checkpoint(self.bottom_proc, fea)
return torch.mean(fea, dim=[1,2,3])

View File

@ -1,7 +1,7 @@
import torch import torch
from torch import nn from torch import nn
from models.archs.arch_util import ConvGnLelu, UpconvBlock, ExpansionBlock from models.archs.arch_util import ConvGnLelu, ExpansionBlock
from models.flownet2.networks.resample2d_package.resample2d import Resample2d from models.flownet2.networks.resample2d_package.resample2d import Resample2d
from utils.util import checkpoint from utils.util import checkpoint
import torch.nn.functional as F import torch.nn.functional as F

View File

@ -187,6 +187,8 @@ def define_D_net(opt_net, img_sz=None, wrap=False):
netD = SRGAN_arch.RefDiscriminatorVgg128(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz / 128) netD = SRGAN_arch.RefDiscriminatorVgg128(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz / 128)
elif which_model == "psnr_approximator": elif which_model == "psnr_approximator":
netD = SRGAN_arch.PsnrApproximator(nf=opt_net['nf'], input_img_factor=img_sz / 128) netD = SRGAN_arch.PsnrApproximator(nf=opt_net['nf'], input_img_factor=img_sz / 128)
elif which_model == "pyramid_rrdb_disc":
netD = SRGAN_arch.PyramidRRDBDiscriminator(in_nc=3, nf=opt_net['nf'])
else: else:
raise NotImplementedError('Discriminator model [{:s}] not recognized'.format(which_model)) raise NotImplementedError('Discriminator model [{:s}] not recognized'.format(which_model))
return netD return netD