diff --git a/codes/data_scripts/extract_subimages.py b/codes/data_scripts/extract_subimages.py index f3d62e6c..2bb0c865 100644 --- a/codes/data_scripts/extract_subimages.py +++ b/codes/data_scripts/extract_subimages.py @@ -20,10 +20,10 @@ def main(): # CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer # compression time. If read raw images during training, use 0 for faster IO speed. if mode == 'single': - opt['input_folder'] = 'F:\\4k6k\\datasets\\sft_ns_images\\images' - opt['save_folder'] = 'F:\\4k6k\\datasets\\sft_ns_images\\images_tiled' - opt['crop_sz'] = 300 # the size of each sub-image - opt['step'] = 280 # step of the sliding crop window + opt['input_folder'] = 'F:\\4k6k\\datasets\\imagesets\\new' + opt['save_folder'] = 'F:\\4k6k\\datasets\\imagesets\\unfiltered_tiled_2x' + opt['crop_sz'] = 512 # the size of each sub-image + opt['step'] = 440 # step of the sliding crop window opt['thres_sz'] = 120 # size threshold extract_single(opt, split_img) elif mode == 'pair': diff --git a/codes/distill_torchscript.py b/codes/distill_torchscript.py index 20939a91..fd5f7455 100644 --- a/codes/distill_torchscript.py +++ b/codes/distill_torchscript.py @@ -9,7 +9,7 @@ import torch.nn.functional as F if __name__ == "__main__": parser = argparse.ArgumentParser() - parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/use_vrp_upsample.yml') + parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/use_video_upsample.yml') opt = option.parse(parser.parse_args().opt, is_train=False) opt = option.dict_to_nonedict(opt) netG = define_G(opt) diff --git a/codes/test.py b/codes/test.py index 2793481f..2e7f1337 100644 --- a/codes/test.py +++ b/codes/test.py @@ -17,7 +17,7 @@ if __name__ == "__main__": torch.backends.cudnn.benchmark = True want_just_images = True parser = argparse.ArgumentParser() - parser.add_argument('-opt', type=str, help='Path to options YMAL file.', default='../options/upsample_full_movie.yml') + parser.add_argument('-opt', type=str, help='Path to options YMAL file.', default='../options/test_resgen_upsample.yml') opt = option.parse(parser.parse_args().opt, is_train=False) opt = option.dict_to_nonedict(opt)