diff --git a/codes/trainer/eval/music_diffusion_fid.py b/codes/trainer/eval/music_diffusion_fid.py index edbbb267..090bd3cb 100644 --- a/codes/trainer/eval/music_diffusion_fid.py +++ b/codes/trainer/eval/music_diffusion_fid.py @@ -223,7 +223,9 @@ class MusicDiffusionFid(evaluator.Evaluator): cheater = self.local_modules['cheater_encoder'].to(audio.device)(mel_norm) # 1. Generate the cheater latent using the input as a reference. - gen_cheater = self.diffuser.ddim_sample_loop(self.model, cheater.shape, progress=True, model_kwargs={'conditioning_input': cheater}) + gen_cheater = self.diffuser.ddim_sample_loop(self.model, cheater.shape, progress=True, + causal=self.causal, causal_slope=self.causal_slope, + model_kwargs={'conditioning_input': cheater}) # 2. Decode the cheater into a MEL gen_mel = self.cheater_decoder_diffuser.ddim_sample_loop(self.local_modules['cheater_decoder'].diff.to(audio.device), (1,256,gen_cheater.shape[-1]*16), progress=True, @@ -253,8 +255,7 @@ class MusicDiffusionFid(evaluator.Evaluator): cheater_codes = self.kmeans_inj({'in': cheater})['out'] ar_latent = self.local_modules['ar_prior'].to(audio.device)(cheater_codes, cheater, return_latent=True) - gen_mel = self.diffuser.ddim_sample_loop(self.model, mel_norm.shape, model_kwargs={'codes': ar_latent}, - causal=self.causal, causal_slope=self.causal_slope, progress=True) + gen_mel = self.diffuser.ddim_sample_loop(self.model, mel_norm.shape, model_kwargs={'codes': ar_latent}, progress=True) gen_mel_denorm = denormalize_mel(gen_mel) output_shape = (1,16,audio.shape[-1]//16)