phase2 filter initial commit

This commit is contained in:
James Betker 2022-03-08 15:51:55 -07:00
parent f56edb2122
commit 7dabc17626

View File

@ -0,0 +1,129 @@
import argparse
import functools
import os
import shutil
import sys
from multiprocessing.pool import ThreadPool
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm
from trainer.injectors.audio_injectors import MelSpectrogramInjector
from utils.util import find_audio_files, load_audio, load_model_from_config, ceil_multiple
class AudioFolderDataset(torch.utils.data.Dataset):
def __init__(self, path, sampling_rate, pad_to, skip=0):
self.audiopaths = find_audio_files(path)[skip:]
self.sampling_rate = sampling_rate
self.pad_to = pad_to
def __getitem__(self, index):
try:
path = self.audiopaths[index]
audio_norm = load_audio(path, self.sampling_rate)
except:
print(f"Error loading audio for file {path} {sys.exc_info()}")
# Recover gracefully. It really sucks when we outright fail.
return self[index+1]
orig_length = audio_norm.shape[-1]
if audio_norm.shape[-1] > self.pad_to:
print(f"Warning - {path} has a longer audio clip than is allowed: {audio_norm.shape[-1]}; allowed: {self.pad_to}. "
f"Truncating the clip, though this will likely invalidate the prediction.")
audio_norm = audio_norm[:self.pad_to]
else:
padding = self.pad_to - audio_norm.shape[-1]
if padding > 0:
audio_norm = torch.nn.functional.pad(audio_norm, (0, padding))
return {
'clip': audio_norm,
'samples': orig_length,
'path': path
}
def __len__(self):
return len(self.audiopaths)
def process_folder(folder, output_path, base_path, progress_file, max_files):
classifier = load_model_from_config(args.classifier_model_opt, model_name='classifier', also_load_savepoint=True).cuda().eval()
dataset = AudioFolderDataset(folder, sampling_rate=22050, pad_to=600000)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=2, pin_memory=True)
spec_injector = MelSpectrogramInjector({'in': 'clip', 'out': 'mel'}, {})
with torch.no_grad():
total_count = 0
for batch in tqdm(dataloader):
max_len = max(batch['samples'])
clips = batch['clip'][:, :max_len].cuda()
paths = batch['path']
mels = spec_injector({'clip': clips})['mel']
padding = ceil_multiple(mels.shape[-1], 16)
mels = F.pad(mels, (0, padding))
def get_spec_mags(clip):
stft = torch.stft(clip, n_fft=22000, hop_length=1024, return_complex=True)
stft = stft[0, -2000:, :]
return (stft.real ** 2 + stft.imag ** 2).sqrt()
no_hifreq_data = get_spec_mags(clips).mean(dim=1) < .15
if torch.all(no_hifreq_data):
continue
labels = torch.argmax(classifier(mels), dim=-1)
for b in range(clips.shape[0]):
if no_hifreq_data[b]:
continue
if labels[b] != 0:
continue
dirpath = paths[b].replace(os.path.basename(paths[b]), "")
path = os.path.relpath(dirpath, base_path)
opath = os.path.join(output_path, path)
os.makedirs(opath, exist_ok=True)
shutil.copy(paths[b], opath)
total_count += 1
if total_count >= max_files:
break
if total_count >= max_files:
break
with open(progress_file, 'a', encoding='utf-8') as pf:
pf.write(output_path + "\n")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-path', type=str, help='Path to search for split files (should be the direct output of phase 1)',
default='Y:\\split\\big_podcast')
parser.add_argument('-progress_file', type=str, help='Place to store all folders that have already been processed', default='Y:\\split\\big_podcast\\already_processed.txt')
parser.add_argument('-output_path', type=str, help='Path where sampled&filtered files are sent', default='Y:\\filtered\\big_podcast')
parser.add_argument('-num_threads', type=int, help='Number of concurrent workers processing files.', default=1)
parser.add_argument('-max_samples_per_folder', type=int, help='Maximum number of clips that can be extracted from each folder.', default=2000)
parser.add_argument('-classifier_model_opt', type=str, help='Train/test options file that configures the model used to classify the audio clips.',
default='../options/test_noisy_audio_clips_classifier.yml')
args = parser.parse_args()
# Build a list of split audio files to process
all_split_files = []
for cast_dir in os.listdir(args.path):
fullpath = os.path.join(args.path, cast_dir)
if os.path.isdir(fullpath):
all_split_files.append(fullpath)
all_split_files = set(all_split_files)
# Load the already processed files, if present, and get the set difference.
if os.path.exists(args.progress_file):
with open(args.progress_file, 'r', encoding='utf-8') as pf:
processed = set(pf.readlines())
orig_len = len(all_split_files)
all_split_files = all_split_files - processed
print(f'All folders: {orig_len}, processed files: {len(processed)}; {len(all_split_files)/orig_len}% of files remain to be processed.')
with ThreadPool(args.num_threads) as pool:
list(tqdm(pool.imap(functools.partial(process_folder, output_path=args.output_path, base_path=args.path,
progress_file=args.progress_file, max_files=args.max_samples_per_folder), all_split_files), total=len(all_split_files)))