Mods to support unet diffusion vocoder with conditioning
This commit is contained in:
parent
c861054218
commit
83798887a8
|
@ -770,9 +770,11 @@ class GaussianDiffusion:
|
|||
terms["loss"] *= self.num_timesteps
|
||||
elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE:
|
||||
model_outputs = model(x_t, self._scale_timesteps(t), **model_kwargs)
|
||||
model_output = model_outputs[0]
|
||||
if len(model_outputs) > 1:
|
||||
if isinstance(model_outputs, tuple):
|
||||
model_output = model_outputs[0]
|
||||
terms['extra_outputs'] = model_outputs[1:]
|
||||
else:
|
||||
model_output = model_outputs
|
||||
|
||||
if self.model_var_type in [
|
||||
ModelVarType.LEARNED,
|
||||
|
|
|
@ -3,8 +3,7 @@ import torch.nn as nn
|
|||
|
||||
|
||||
from models.diffusion.nn import normalization, conv_nd, zero_module
|
||||
from models.diffusion.unet_diffusion import Downsample, AttentionBlock, QKVAttention, QKVAttentionLegacy
|
||||
|
||||
from models.diffusion.unet_diffusion import Downsample, AttentionBlock, QKVAttention, QKVAttentionLegacy, Upsample
|
||||
|
||||
# Combined resnet & full-attention encoder for converting an audio clip into an embedding.
|
||||
from utils.util import checkpoint
|
||||
|
@ -90,17 +89,17 @@ class ResBlock(nn.Module):
|
|||
|
||||
|
||||
class AudioMiniEncoder(nn.Module):
|
||||
def __init__(self, spec_dim, embedding_dim, resnet_blocks=2, attn_blocks=4, num_attn_heads=4, dropout=0):
|
||||
def __init__(self, spec_dim, embedding_dim, base_channels=128, depth=2, resnet_blocks=2, attn_blocks=4, num_attn_heads=4, dropout=0, downsample_factor=2, kernel_size=3):
|
||||
super().__init__()
|
||||
self.init = nn.Sequential(
|
||||
conv_nd(1, spec_dim, 128, 3, padding=1)
|
||||
conv_nd(1, spec_dim, base_channels, 3, padding=1)
|
||||
)
|
||||
ch = 128
|
||||
ch = base_channels
|
||||
res = []
|
||||
for l in range(2):
|
||||
for l in range(depth):
|
||||
for r in range(resnet_blocks):
|
||||
res.append(ResBlock(ch, dropout, dims=1, do_checkpoint=False))
|
||||
res.append(Downsample(ch, use_conv=True, dims=1, out_channels=ch*2, factor=2))
|
||||
res.append(ResBlock(ch, dropout, dims=1, do_checkpoint=False, kernel_size=kernel_size))
|
||||
res.append(Downsample(ch, use_conv=True, dims=1, out_channels=ch*2, factor=downsample_factor))
|
||||
ch *= 2
|
||||
self.res = nn.Sequential(*res)
|
||||
self.final = nn.Sequential(
|
||||
|
|
335
codes/models/gpt_voice/unet_diffusion_vocoder_with_ref.py
Normal file
335
codes/models/gpt_voice/unet_diffusion_vocoder_with_ref.py
Normal file
|
@ -0,0 +1,335 @@
|
|||
from models.diffusion.fp16_util import convert_module_to_f32, convert_module_to_f16
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import AttentionPool2d, AttentionBlock, ResBlock, TimestepEmbedSequential, \
|
||||
Downsample, Upsample
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from models.gpt_voice.mini_encoder import AudioMiniEncoder, EmbeddingCombiner
|
||||
from trainer.networks import register_model
|
||||
from utils.util import get_mask_from_lengths
|
||||
|
||||
|
||||
class DiscreteSpectrogramConditioningBlock(nn.Module):
|
||||
def __init__(self, discrete_codes, channels):
|
||||
super().__init__()
|
||||
self.emb = nn.Embedding(discrete_codes, channels)
|
||||
|
||||
"""
|
||||
Embeds the given codes and concatenates them onto x. Return shape: bx2cxS
|
||||
|
||||
:param x: bxcxS waveform latent
|
||||
:param codes: bxN discrete codes, N <= S
|
||||
"""
|
||||
def forward(self, x, codes):
|
||||
_, c, S = x.shape
|
||||
b, N = codes.shape
|
||||
assert N <= S
|
||||
emb = self.emb(codes).permute(0,2,1)
|
||||
emb = nn.functional.interpolate(emb, size=(S,), mode='nearest')
|
||||
return torch.cat([x, emb], dim=1)
|
||||
|
||||
|
||||
class DiffusionVocoderWithRef(nn.Module):
|
||||
"""
|
||||
The full UNet model with attention and timestep embedding.
|
||||
|
||||
Customized to be conditioned on a spectrogram prior.
|
||||
|
||||
:param in_channels: channels in the input Tensor.
|
||||
:param spectrogram_channels: channels in the conditioning spectrogram.
|
||||
:param model_channels: base channel count for the model.
|
||||
:param out_channels: channels in the output Tensor.
|
||||
:param num_res_blocks: number of residual blocks per downsample.
|
||||
:param attention_resolutions: a collection of downsample rates at which
|
||||
attention will take place. May be a set, list, or tuple.
|
||||
For example, if this contains 4, then at 4x downsampling, attention
|
||||
will be used.
|
||||
:param dropout: the dropout probability.
|
||||
:param channel_mult: channel multiplier for each level of the UNet.
|
||||
:param conv_resample: if True, use learned convolutions for upsampling and
|
||||
downsampling.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D.
|
||||
:param num_heads: the number of attention heads in each attention layer.
|
||||
:param num_heads_channels: if specified, ignore num_heads and instead use
|
||||
a fixed channel width per attention head.
|
||||
:param num_heads_upsample: works with num_heads to set a different number
|
||||
of heads for upsampling. Deprecated.
|
||||
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
||||
:param resblock_updown: use residual blocks for up/downsampling.
|
||||
:param use_new_attention_order: use a different attention pattern for potentially
|
||||
increased efficiency.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_channels,
|
||||
num_res_blocks,
|
||||
in_channels=1,
|
||||
out_channels=2, # mean and variance
|
||||
discrete_codes=8192,
|
||||
dropout=0,
|
||||
# 38400 -> 19200 -> 9600 -> 4800 -> 2400 -> 1200 -> 600 -> 300 -> 150 for ~2secs@22050Hz
|
||||
channel_mult=(1, 1, 2, 2, 4, 8, 16, 32, 64),
|
||||
spectrogram_conditioning_resolutions=(4,8,16,32),
|
||||
attention_resolutions=(64,128,256),
|
||||
conv_resample=True,
|
||||
dims=1,
|
||||
use_fp16=False,
|
||||
num_heads=1,
|
||||
num_head_channels=-1,
|
||||
num_heads_upsample=-1,
|
||||
use_scale_shift_norm=False,
|
||||
resblock_updown=False,
|
||||
use_new_attention_order=False,
|
||||
kernel_size=3,
|
||||
scale_factor=2,
|
||||
conditioning_inputs_provided=True,
|
||||
conditioning_input_dim=80,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attention_resolutions = attention_resolutions
|
||||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
self.dtype = torch.float16 if use_fp16 else torch.float32
|
||||
self.num_heads = num_heads
|
||||
self.num_head_channels = num_head_channels
|
||||
self.num_heads_upsample = num_heads_upsample
|
||||
self.dims = dims
|
||||
|
||||
padding = 1 if kernel_size == 3 else 2
|
||||
|
||||
time_embed_dim = model_channels * 4
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
|
||||
self.conditioning_enabled = conditioning_inputs_provided
|
||||
if conditioning_inputs_provided:
|
||||
self.contextual_embedder = AudioMiniEncoder(conditioning_input_dim, time_embed_dim)
|
||||
self.query_gen = AudioMiniEncoder(in_channels, time_embed_dim, base_channels=32, depth=6, resnet_blocks=1,
|
||||
attn_blocks=2, num_attn_heads=2, dropout=dropout, downsample_factor=4, kernel_size=5)
|
||||
self.embedding_combiner = EmbeddingCombiner(time_embed_dim)
|
||||
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
conv_nd(dims, in_channels, model_channels, kernel_size, padding=padding)
|
||||
)
|
||||
]
|
||||
)
|
||||
self._feature_size = model_channels
|
||||
input_block_chans = [model_channels]
|
||||
ch = model_channels
|
||||
ds = 1
|
||||
|
||||
for level, mult in enumerate(channel_mult):
|
||||
if ds in spectrogram_conditioning_resolutions:
|
||||
self.input_blocks.append(DiscreteSpectrogramConditioningBlock(discrete_codes, ch))
|
||||
ch *= 2
|
||||
|
||||
for _ in range(num_res_blocks):
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=mult * model_channels,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
kernel_size=kernel_size,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
if ds in attention_resolutions:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=num_head_channels,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
input_block_chans.append(ch)
|
||||
if level != len(channel_mult) - 1:
|
||||
out_ch = ch
|
||||
self.input_blocks.append(
|
||||
TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=True,
|
||||
kernel_size=kernel_size,
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor
|
||||
)
|
||||
)
|
||||
)
|
||||
ch = out_ch
|
||||
input_block_chans.append(ch)
|
||||
ds *= 2
|
||||
self._feature_size += ch
|
||||
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
kernel_size=kernel_size,
|
||||
),
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=num_head_channels,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
kernel_size=kernel_size,
|
||||
),
|
||||
)
|
||||
self._feature_size += ch
|
||||
|
||||
self.output_blocks = nn.ModuleList([])
|
||||
for level, mult in list(enumerate(channel_mult))[::-1]:
|
||||
for i in range(num_res_blocks + 1):
|
||||
ich = input_block_chans.pop()
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch + ich,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=model_channels * mult,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
kernel_size=kernel_size,
|
||||
)
|
||||
]
|
||||
ch = model_channels * mult
|
||||
if ds in attention_resolutions:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads_upsample,
|
||||
num_head_channels=num_head_channels,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
)
|
||||
)
|
||||
if level and i == num_res_blocks:
|
||||
out_ch = ch
|
||||
layers.append(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
up=True,
|
||||
kernel_size=kernel_size,
|
||||
)
|
||||
if resblock_updown
|
||||
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor)
|
||||
)
|
||||
ds //= 2
|
||||
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(ch),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(dims, model_channels, out_channels, kernel_size, padding=padding)),
|
||||
)
|
||||
|
||||
def convert_to_fp16(self):
|
||||
"""
|
||||
Convert the torso of the model to float16.
|
||||
"""
|
||||
self.input_blocks.apply(convert_module_to_f16)
|
||||
self.middle_block.apply(convert_module_to_f16)
|
||||
self.output_blocks.apply(convert_module_to_f16)
|
||||
|
||||
def convert_to_fp32(self):
|
||||
"""
|
||||
Convert the torso of the model to float32.
|
||||
"""
|
||||
self.input_blocks.apply(convert_module_to_f32)
|
||||
self.middle_block.apply(convert_module_to_f32)
|
||||
self.output_blocks.apply(convert_module_to_f32)
|
||||
|
||||
def forward(self, x, timesteps, discrete_spectrogram, conditioning_inputs=None, num_conditioning_signals=None):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of inputs.
|
||||
:param timesteps: a 1-D batch of timesteps.
|
||||
:param y: an [N] Tensor of labels, if class-conditional.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
assert x.shape[-1] % 4096 == 0 # This model operates at base//4096 at it's bottom levels, thus this requirement.
|
||||
if self.conditioning_enabled:
|
||||
assert conditioning_inputs is not None
|
||||
assert num_conditioning_signals is not None
|
||||
|
||||
hs = []
|
||||
emb1 = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
if self.conditioning_enabled:
|
||||
emb2 = torch.stack([self.contextual_embedder(ci.squeeze(1)) for ci in list(torch.chunk(conditioning_inputs, conditioning_inputs.shape[1], dim=1))], dim=1)
|
||||
emb = torch.cat([emb1.unsqueeze(1), emb2], dim=1)
|
||||
emb = self.embedding_combiner(emb, None, self.query_gen(x))
|
||||
else:
|
||||
emb = emb1
|
||||
|
||||
h = x.type(self.dtype)
|
||||
for k, module in enumerate(self.input_blocks):
|
||||
if isinstance(module, DiscreteSpectrogramConditioningBlock):
|
||||
h = module(h, discrete_spectrogram)
|
||||
else:
|
||||
h = module(h, emb)
|
||||
hs.append(h)
|
||||
h = self.middle_block(h, emb)
|
||||
for module in self.output_blocks:
|
||||
h = torch.cat([h, hs.pop()], dim=1)
|
||||
h = module(h, emb)
|
||||
h = h.type(x.dtype)
|
||||
return self.out(h)
|
||||
|
||||
|
||||
@register_model
|
||||
def register_unet_diffusion_vocoder_with_ref(opt_net, opt):
|
||||
return DiffusionVocoderWithRef(**opt_net['kwargs'])
|
||||
|
||||
|
||||
# Test for ~4 second audio clip at 22050Hz
|
||||
if __name__ == '__main__':
|
||||
clip = torch.randn(2, 1, 81920)
|
||||
spec = torch.randint(8192, (2, 500,))
|
||||
cond = torch.randn(2, 4, 80, 600)
|
||||
ts = torch.LongTensor([555, 556])
|
||||
model = DiffusionVocoderWithRef(32, 2)
|
||||
print(model(clip, ts, spec, cond, 4).shape)
|
|
@ -284,7 +284,7 @@ class Trainer:
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_dvae_clips_with_discretization_loss.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_diffusion_vocoder_clips.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
|
Loading…
Reference in New Issue
Block a user