From 851070075a11c5e09979d220001e2da542eb5ad9 Mon Sep 17 00:00:00 2001 From: James Betker Date: Sat, 22 Jan 2022 08:23:14 -0700 Subject: [PATCH] text<->cond clip I need that universal clip.. --- codes/models/gpt_voice/text_cond_clip.py | 112 +++++++++++++++++++++++ 1 file changed, 112 insertions(+) create mode 100644 codes/models/gpt_voice/text_cond_clip.py diff --git a/codes/models/gpt_voice/text_cond_clip.py b/codes/models/gpt_voice/text_cond_clip.py new file mode 100644 index 00000000..fbff7148 --- /dev/null +++ b/codes/models/gpt_voice/text_cond_clip.py @@ -0,0 +1,112 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from einops import rearrange +from torch import einsum + +from models.gpt_voice.unified_voice2 import ConditioningEncoder +from models.lucidrains.dalle.transformer import Transformer +from trainer.networks import register_model +from utils.util import opt_get + + +def exists(val): + return val is not None + + +def masked_mean(t, mask, dim = 1): + t = t.masked_fill(~mask[:, :, None], 0.) + return t.sum(dim = 1) / mask.sum(dim = 1)[..., None] + + +class VoiceCondCLIP(nn.Module): + """ + CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and an encoded conditioning + clip. + + Originally from https://github.com/lucidrains/DALLE-pytorch/blob/main/dalle_pytorch/dalle_pytorch.py + """ + + def __init__( + self, + *, + dim_speech=512, + dim_latent=512, + num_speech_tokens=8192, + speech_enc_depth=6, + speech_heads=8, + speech_seq_len=250, + voice_mask_percentage=0, + wav_token_compression=1024, + ): + super().__init__() + self.cond_encoder = ConditioningEncoder(80, dim_latent, do_checkpointing=True) + + self.speech_emb = nn.Embedding(num_speech_tokens, dim_speech) + self.speech_pos_emb = nn.Embedding(num_speech_tokens, dim_speech) + self.speech_transformer = Transformer(causal=False, seq_len=speech_seq_len, dim=dim_speech, + depth=speech_enc_depth, heads=speech_heads, rotary_emb=False) + self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False) + + self.temperature = nn.Parameter(torch.tensor(1.)) + self.voice_mask_percentage = voice_mask_percentage + self.wav_token_compression = wav_token_compression + + def forward( + self, + cond_mel, + speech_tokens, + wav_lengths, + return_loss=False + ): + # This model will receive micro-batches with a ton of padding for the speech tokens. Ameliorate this by + # chopping the inputs by the maximum actual length. + max_mel_len = wav_lengths.max() // self.wav_token_compression + speech_tokens = speech_tokens[:, :max_mel_len] + + b, device = speech_tokens.shape[0], speech_tokens.device + if self.training: + voice_mask = torch.rand_like(speech_tokens.float()) > self.voice_mask_percentage + else: + voice_mask = torch.ones_like(speech_tokens.float()).bool() + + speech_emb = self.speech_emb(speech_tokens) + speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device)) + + cond_latents = self.cond_encoder(cond_mel) + + enc_speech = self.speech_transformer(speech_emb, mask=voice_mask) + speech_latents = masked_mean(enc_speech, voice_mask, dim=1) + speech_latents = self.to_speech_latent(speech_latents) + + cond_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (cond_latents, speech_latents)) + + temp = self.temperature.exp() + + if not return_loss: + sim = einsum('n d, n d -> n', cond_latents, speech_latents) * temp + return sim + + sim = einsum('i d, j d -> i j', cond_latents, speech_latents) * temp + labels = torch.arange(b, device=device) + loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2 + return loss + + +@register_model +def register_voice_cond_clip(opt_net, opt): + return VoiceCondCLIP(**opt_get(opt_net, ['kwargs'], {})) + + +if __name__ == '__main__': + clip = VoiceCondCLIP(voice_mask_percentage=.2) + clip(torch.randn(2,80,400), + torch.randint(0,8192,(2,250)), + torch.tensor([101,102]), + return_loss=True) + nonloss = clip( + torch.randn(2, 80, 400), + torch.randint(0,8192,(2,250)), + torch.tensor([101,102]), + return_loss=False) + print(nonloss.shape) \ No newline at end of file