Initial checkin of nvidia tacotron model & dataset

These two are tested, full support for training to come.
This commit is contained in:
James Betker 2021-07-06 11:11:35 -06:00
parent 3801d5d55e
commit 86fd3ad7fd
19 changed files with 1542 additions and 15 deletions

View File

@ -2,11 +2,12 @@
import logging
import torch
import torch.utils.data
from munch import munchify
from utils.util import opt_get
def create_dataloader(dataset, dataset_opt, opt=None, sampler=None):
def create_dataloader(dataset, dataset_opt, opt=None, sampler=None, collate_fn=None):
phase = dataset_opt['phase']
if phase == 'train':
if opt_get(opt, ['dist'], False):
@ -21,15 +22,17 @@ def create_dataloader(dataset, dataset_opt, opt=None, sampler=None):
shuffle = True
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle,
num_workers=num_workers, sampler=sampler, drop_last=True,
pin_memory=True)
pin_memory=True, collate_fn=collate_fn)
else:
batch_size = dataset_opt['batch_size'] or 1
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=0,
pin_memory=True)
pin_memory=True, collate_fn=collate_fn)
def create_dataset(dataset_opt):
def create_dataset(dataset_opt, return_collate=False):
mode = dataset_opt['mode']
collate = None
# datasets for image restoration
if mode == 'fullimage':
from data.full_image_dataset import FullImageDataset as D
@ -59,8 +62,19 @@ def create_dataset(dataset_opt):
from data.random_dataset import RandomDataset as D
elif mode == 'zipfile':
from data.zip_file_dataset import ZipFileDataset as D
elif mode == 'nv_tacotron':
from data.audio.nv_tacotron_dataset import TextMelLoader as D
from data.audio.nv_tacotron_dataset import TextMelCollate as C
from models.tacotron2.hparams import create_hparams
default_params = create_hparams()
dataset_opt.update(default_params)
dataset_opt = munchify(dataset_opt)
collate = C(dataset_opt.n_frames_per_step)
else:
raise NotImplementedError('Dataset [{:s}] is not recognized.'.format(mode))
dataset = D(dataset_opt)
return dataset
if return_collate:
return dataset, collate
else:
return dataset

View File

@ -0,0 +1,127 @@
import os
import random
import numpy as np
import torch
import torch.utils.data
import models.tacotron2.layers as layers
from models.tacotron2.taco_utils import load_wav_to_torch, load_filepaths_and_text
from models.tacotron2.text import text_to_sequence
class TextMelLoader(torch.utils.data.Dataset):
"""
1) loads audio,text pairs
2) normalizes text and converts them to sequences of one-hot vectors
3) computes mel-spectrograms from audio files.
"""
def __init__(self, hparams):
self.path = os.path.dirname(hparams['path'])
self.audiopaths_and_text = load_filepaths_and_text(hparams['path'])
self.text_cleaners = hparams.text_cleaners
self.max_wav_value = hparams.max_wav_value
self.sampling_rate = hparams.sampling_rate
self.load_mel_from_disk = hparams.load_mel_from_disk
self.stft = layers.TacotronSTFT(
hparams.filter_length, hparams.hop_length, hparams.win_length,
hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin,
hparams.mel_fmax)
random.seed(hparams.seed)
random.shuffle(self.audiopaths_and_text)
def get_mel_text_pair(self, audiopath_and_text):
# separate filename and text
audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
audiopath = os.path.join(self.path, audiopath)
text = self.get_text(text)
mel = self.get_mel(audiopath)
return (text, mel)
def get_mel(self, filename):
if not self.load_mel_from_disk:
audio, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.stft.sampling_rate:
raise ValueError("{} {} SR doesn't match target {} SR".format(
sampling_rate, self.stft.sampling_rate))
audio_norm = audio / self.max_wav_value
audio_norm = audio_norm.unsqueeze(0)
audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
melspec = self.stft.mel_spectrogram(audio_norm)
melspec = torch.squeeze(melspec, 0)
else:
melspec = torch.from_numpy(np.load(filename))
assert melspec.size(0) == self.stft.n_mel_channels, (
'Mel dimension mismatch: given {}, expected {}'.format(
melspec.size(0), self.stft.n_mel_channels))
return melspec
def get_text(self, text):
text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
return text_norm
def __getitem__(self, index):
return self.get_mel_text_pair(self.audiopaths_and_text[index])
def __len__(self):
return len(self.audiopaths_and_text)
class TextMelCollate():
""" Zero-pads model inputs and targets based on number of frames per setep
"""
def __init__(self, n_frames_per_step):
self.n_frames_per_step = n_frames_per_step
def __call__(self, batch):
"""Collate's training batch from normalized text and mel-spectrogram
PARAMS
------
batch: [text_normalized, mel_normalized]
"""
# Right zero-pad all one-hot text sequences to max input length
input_lengths, ids_sorted_decreasing = torch.sort(
torch.LongTensor([len(x[0]) for x in batch]),
dim=0, descending=True)
max_input_len = input_lengths[0]
text_padded = torch.LongTensor(len(batch), max_input_len)
text_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
text = batch[ids_sorted_decreasing[i]][0]
text_padded[i, :text.size(0)] = text
# Right zero-pad mel-spec
num_mels = batch[0][1].size(0)
max_target_len = max([x[1].size(1) for x in batch])
if max_target_len % self.n_frames_per_step != 0:
max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
assert max_target_len % self.n_frames_per_step == 0
# include mel padded and gate padded
mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len)
mel_padded.zero_()
gate_padded = torch.FloatTensor(len(batch), max_target_len)
gate_padded.zero_()
output_lengths = torch.LongTensor(len(batch))
for i in range(len(ids_sorted_decreasing)):
mel = batch[ids_sorted_decreasing[i]][1]
mel_padded[i, :, :mel.size(1)] = mel
gate_padded[i, mel.size(1)-1:] = 1
output_lengths[i] = mel.size(1)
return text_padded, input_lengths, mel_padded, gate_padded, \
output_lengths
if __name__ == '__main__':
params = {
'mode': 'nv_tacotron',
'path': 'E:\\4k6k\\datasets\\audio\\LJSpeech-1.1\\ljs_audio_text_train_filelist.txt',
}
from data import create_dataset
ds = create_dataset(params)
j = ds[0]
print(j)

View File

@ -0,0 +1,32 @@
This directory contains works with the below licenses, which should be considered in addition
to the base repository license.
BSD 3-Clause License
Copyright (c) 2018, NVIDIA Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -0,0 +1,93 @@
import torch
import numpy as np
from scipy.signal import get_window
import librosa.util as librosa_util
def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
n_fft=800, dtype=np.float32, norm=None):
"""
# from librosa 0.6
Compute the sum-square envelope of a window function at a given hop length.
This is used to estimate modulation effects induced by windowing
observations in short-time fourier transforms.
Parameters
----------
window : string, tuple, number, callable, or list-like
Window specification, as in `get_window`
n_frames : int > 0
The number of analysis frames
hop_length : int > 0
The number of samples to advance between frames
win_length : [optional]
The length of the window function. By default, this matches `n_fft`.
n_fft : int > 0
The length of each analysis frame.
dtype : np.dtype
The data type of the output
Returns
-------
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
The sum-squared envelope of the window function
"""
if win_length is None:
win_length = n_fft
n = n_fft + hop_length * (n_frames - 1)
x = np.zeros(n, dtype=dtype)
# Compute the squared window at the desired length
win_sq = get_window(window, win_length, fftbins=True)
win_sq = librosa_util.normalize(win_sq, norm=norm)**2
win_sq = librosa_util.pad_center(win_sq, n_fft)
# Fill the envelope
for i in range(n_frames):
sample = i * hop_length
x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
return x
def griffin_lim(magnitudes, stft_fn, n_iters=30):
"""
PARAMS
------
magnitudes: spectrogram magnitudes
stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods
"""
angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size())))
angles = angles.astype(np.float32)
angles = torch.autograd.Variable(torch.from_numpy(angles))
signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
for i in range(n_iters):
_, angles = stft_fn.transform(signal)
signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
return signal
def dynamic_range_compression(x, C=1, clip_val=1e-5):
"""
PARAMS
------
C: compression factor
"""
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression(x, C=1):
"""
PARAMS
------
C: compression factor used to compress
"""
return torch.exp(x) / C

View File

@ -0,0 +1,95 @@
import tensorflow as tf
from models.tacotron2.text import symbols
def create_hparams(hparams_string=None, verbose=False):
"""Create model hyperparameters. Parse nondefault from given string."""
hparams = dict(
################################
# Experiment Parameters #
################################
epochs=500,
iters_per_checkpoint=1000,
seed=1234,
dynamic_loss_scaling=True,
fp16_run=False,
distributed_run=False,
dist_backend="nccl",
dist_url="tcp://localhost:54321",
cudnn_enabled=True,
cudnn_benchmark=False,
ignore_layers=['embedding.weight'],
################################
# Data Parameters #
################################
load_mel_from_disk=False,
training_files='filelists/ljs_audio_text_train_filelist.txt',
validation_files='filelists/ljs_audio_text_val_filelist.txt',
text_cleaners=['english_cleaners'],
################################
# Audio Parameters #
################################
max_wav_value=32768.0,
sampling_rate=22050,
filter_length=1024,
hop_length=256,
win_length=1024,
n_mel_channels=80,
mel_fmin=0.0,
mel_fmax=8000.0,
################################
# Model Parameters #
################################
n_symbols=len(symbols),
symbols_embedding_dim=512,
# Encoder parameters
encoder_kernel_size=5,
encoder_n_convolutions=3,
encoder_embedding_dim=512,
# Decoder parameters
n_frames_per_step=1, # currently only 1 is supported
decoder_rnn_dim=1024,
prenet_dim=256,
max_decoder_steps=1000,
gate_threshold=0.5,
p_attention_dropout=0.1,
p_decoder_dropout=0.1,
# Attention parameters
attention_rnn_dim=1024,
attention_dim=128,
# Location Layer parameters
attention_location_n_filters=32,
attention_location_kernel_size=31,
# Mel-post processing network parameters
postnet_embedding_dim=512,
postnet_kernel_size=5,
postnet_n_convolutions=5,
################################
# Optimization Hyperparameters #
################################
use_saved_learning_rate=False,
learning_rate=1e-3,
weight_decay=1e-6,
grad_clip_thresh=1.0,
batch_size=64,
mask_padding=True # set model's padded outputs to padded values
)
if hparams_string:
tf.logging.info('Parsing command line hparams: %s', hparams_string)
hparams.parse(hparams_string)
if verbose:
tf.logging.info('Final parsed hparams: %s', hparams.values())
return hparams

View File

@ -0,0 +1,80 @@
import torch
from librosa.filters import mel as librosa_mel_fn
from models.tacotron2.audio_processing import dynamic_range_compression
from models.tacotron2.audio_processing import dynamic_range_decompression
from models.tacotron2.stft import STFT
class LinearNorm(torch.nn.Module):
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
super(LinearNorm, self).__init__()
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
torch.nn.init.xavier_uniform_(
self.linear_layer.weight,
gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, x):
return self.linear_layer(x)
class ConvNorm(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=None, dilation=1, bias=True, w_init_gain='linear'):
super(ConvNorm, self).__init__()
if padding is None:
assert(kernel_size % 2 == 1)
padding = int(dilation * (kernel_size - 1) / 2)
self.conv = torch.nn.Conv1d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation,
bias=bias)
torch.nn.init.xavier_uniform_(
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, signal):
conv_signal = self.conv(signal)
return conv_signal
class TacotronSTFT(torch.nn.Module):
def __init__(self, filter_length=1024, hop_length=256, win_length=1024,
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0,
mel_fmax=8000.0):
super(TacotronSTFT, self).__init__()
self.n_mel_channels = n_mel_channels
self.sampling_rate = sampling_rate
self.stft_fn = STFT(filter_length, hop_length, win_length)
mel_basis = librosa_mel_fn(
sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax)
mel_basis = torch.from_numpy(mel_basis).float()
self.register_buffer('mel_basis', mel_basis)
def spectral_normalize(self, magnitudes):
output = dynamic_range_compression(magnitudes)
return output
def spectral_de_normalize(self, magnitudes):
output = dynamic_range_decompression(magnitudes)
return output
def mel_spectrogram(self, y):
"""Computes mel-spectrograms from a batch of waves
PARAMS
------
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
RETURNS
-------
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
"""
assert(torch.min(y.data) >= -1)
assert(torch.max(y.data) <= 1)
magnitudes, phases = self.stft_fn.transform(y)
magnitudes = magnitudes.data
mel_output = torch.matmul(self.mel_basis, magnitudes)
mel_output = self.spectral_normalize(mel_output)
return mel_output

View File

@ -0,0 +1,19 @@
from torch import nn
class Tacotron2Loss(nn.Module):
def __init__(self):
super(Tacotron2Loss, self).__init__()
def forward(self, model_output, targets):
mel_target, gate_target = targets[0], targets[1]
mel_target.requires_grad = False
gate_target.requires_grad = False
gate_target = gate_target.view(-1, 1)
mel_out, mel_out_postnet, gate_out, _ = model_output
gate_out = gate_out.view(-1, 1)
mel_loss = nn.MSELoss()(mel_out, mel_target) + \
nn.MSELoss()(mel_out_postnet, mel_target)
gate_loss = nn.BCEWithLogitsLoss()(gate_out, gate_target)
return mel_loss + gate_loss

View File

@ -0,0 +1,141 @@
"""
BSD 3-Clause License
Copyright (c) 2017, Prem Seetharaman
All rights reserved.
* Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
import torch
import numpy as np
import torch.nn.functional as F
from torch.autograd import Variable
from scipy.signal import get_window
from librosa.util import pad_center, tiny
from models.tacotron2.audio_processing import window_sumsquare
class STFT(torch.nn.Module):
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
def __init__(self, filter_length=800, hop_length=200, win_length=800,
window='hann'):
super(STFT, self).__init__()
self.filter_length = filter_length
self.hop_length = hop_length
self.win_length = win_length
self.window = window
self.forward_transform = None
scale = self.filter_length / self.hop_length
fourier_basis = np.fft.fft(np.eye(self.filter_length))
cutoff = int((self.filter_length / 2 + 1))
fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
np.imag(fourier_basis[:cutoff, :])])
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
inverse_basis = torch.FloatTensor(
np.linalg.pinv(scale * fourier_basis).T[:, None, :])
if window is not None:
assert(filter_length >= win_length)
# get window and zero center pad it to filter_length
fft_window = get_window(window, win_length, fftbins=True)
fft_window = pad_center(fft_window, filter_length)
fft_window = torch.from_numpy(fft_window).float()
# window the bases
forward_basis *= fft_window
inverse_basis *= fft_window
self.register_buffer('forward_basis', forward_basis.float())
self.register_buffer('inverse_basis', inverse_basis.float())
def transform(self, input_data):
num_batches = input_data.size(0)
num_samples = input_data.size(1)
self.num_samples = num_samples
# similar to librosa, reflect-pad the input
input_data = input_data.view(num_batches, 1, num_samples)
input_data = F.pad(
input_data.unsqueeze(1),
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
mode='reflect')
input_data = input_data.squeeze(1)
forward_transform = F.conv1d(
input_data,
Variable(self.forward_basis, requires_grad=False),
stride=self.hop_length,
padding=0)
cutoff = int((self.filter_length / 2) + 1)
real_part = forward_transform[:, :cutoff, :]
imag_part = forward_transform[:, cutoff:, :]
magnitude = torch.sqrt(real_part**2 + imag_part**2)
phase = torch.autograd.Variable(
torch.atan2(imag_part.data, real_part.data))
return magnitude, phase
def inverse(self, magnitude, phase):
recombine_magnitude_phase = torch.cat(
[magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)
inverse_transform = F.conv_transpose1d(
recombine_magnitude_phase,
Variable(self.inverse_basis, requires_grad=False),
stride=self.hop_length,
padding=0)
if self.window is not None:
window_sum = window_sumsquare(
self.window, magnitude.size(-1), hop_length=self.hop_length,
win_length=self.win_length, n_fft=self.filter_length,
dtype=np.float32)
# remove modulation effects
approx_nonzero_indices = torch.from_numpy(
np.where(window_sum > tiny(window_sum))[0])
window_sum = torch.autograd.Variable(
torch.from_numpy(window_sum), requires_grad=False)
window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]
# scale by hop ratio
inverse_transform *= float(self.filter_length) / self.hop_length
inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]
return inverse_transform
def forward(self, input_data):
self.magnitude, self.phase = self.transform(input_data)
reconstruction = self.inverse(self.magnitude, self.phase)
return reconstruction

View File

@ -0,0 +1,29 @@
import numpy as np
from scipy.io.wavfile import read
import torch
def get_mask_from_lengths(lengths):
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len, out=torch.LongTensor(max_len, device=lengths.device))
mask = (ids < lengths.unsqueeze(1)).bool()
return mask
def load_wav_to_torch(full_path):
sampling_rate, data = read(full_path)
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
def load_filepaths_and_text(filename, split="|"):
with open(filename, encoding='utf-8') as f:
filepaths_and_text = [line.strip().split(split) for line in f]
return filepaths_and_text
def to_gpu(x):
x = x.contiguous()
if torch.cuda.is_available():
x = x.cuda(non_blocking=True)
return torch.autograd.Variable(x)

View File

@ -0,0 +1,549 @@
from math import sqrt
import torch
from munch import munchify
from torch.autograd import Variable
from torch import nn
from torch.nn import functional as F
from layers import ConvNorm, LinearNorm
from models.tacotron2.hparams import create_hparams
from trainer.networks import register_model
from taco_utils import to_gpu, get_mask_from_lengths
from utils.util import opt_get
class LocationLayer(nn.Module):
def __init__(self, attention_n_filters, attention_kernel_size,
attention_dim):
super(LocationLayer, self).__init__()
padding = int((attention_kernel_size - 1) / 2)
self.location_conv = ConvNorm(2, attention_n_filters,
kernel_size=attention_kernel_size,
padding=padding, bias=False, stride=1,
dilation=1)
self.location_dense = LinearNorm(attention_n_filters, attention_dim,
bias=False, w_init_gain='tanh')
def forward(self, attention_weights_cat):
processed_attention = self.location_conv(attention_weights_cat)
processed_attention = processed_attention.transpose(1, 2)
processed_attention = self.location_dense(processed_attention)
return processed_attention
class Attention(nn.Module):
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
attention_location_n_filters, attention_location_kernel_size):
super(Attention, self).__init__()
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
bias=False, w_init_gain='tanh')
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
w_init_gain='tanh')
self.v = LinearNorm(attention_dim, 1, bias=False)
self.location_layer = LocationLayer(attention_location_n_filters,
attention_location_kernel_size,
attention_dim)
self.score_mask_value = -float("inf")
def get_alignment_energies(self, query, processed_memory,
attention_weights_cat):
"""
PARAMS
------
query: decoder output (batch, n_mel_channels * n_frames_per_step)
processed_memory: processed encoder outputs (B, T_in, attention_dim)
attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)
RETURNS
-------
alignment (batch, max_time)
"""
processed_query = self.query_layer(query.unsqueeze(1))
processed_attention_weights = self.location_layer(attention_weights_cat)
energies = self.v(torch.tanh(
processed_query + processed_attention_weights + processed_memory))
energies = energies.squeeze(-1)
return energies
def forward(self, attention_hidden_state, memory, processed_memory,
attention_weights_cat, mask):
"""
PARAMS
------
attention_hidden_state: attention rnn last output
memory: encoder outputs
processed_memory: processed encoder outputs
attention_weights_cat: previous and cummulative attention weights
mask: binary mask for padded data
"""
alignment = self.get_alignment_energies(
attention_hidden_state, processed_memory, attention_weights_cat)
if mask is not None:
alignment.data.masked_fill_(mask, self.score_mask_value)
attention_weights = F.softmax(alignment, dim=1)
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
attention_context = attention_context.squeeze(1)
return attention_context, attention_weights
class Prenet(nn.Module):
def __init__(self, in_dim, sizes):
super(Prenet, self).__init__()
in_sizes = [in_dim] + sizes[:-1]
self.layers = nn.ModuleList(
[LinearNorm(in_size, out_size, bias=False)
for (in_size, out_size) in zip(in_sizes, sizes)])
def forward(self, x):
for linear in self.layers:
x = F.dropout(F.relu(linear(x)), p=0.5, training=True)
return x
class Postnet(nn.Module):
"""Postnet
- Five 1-d convolution with 512 channels and kernel size 5
"""
def __init__(self, hparams):
super(Postnet, self).__init__()
self.convolutions = nn.ModuleList()
self.convolutions.append(
nn.Sequential(
ConvNorm(hparams.n_mel_channels, hparams.postnet_embedding_dim,
kernel_size=hparams.postnet_kernel_size, stride=1,
padding=int((hparams.postnet_kernel_size - 1) / 2),
dilation=1, w_init_gain='tanh'),
nn.BatchNorm1d(hparams.postnet_embedding_dim))
)
for i in range(1, hparams.postnet_n_convolutions - 1):
self.convolutions.append(
nn.Sequential(
ConvNorm(hparams.postnet_embedding_dim,
hparams.postnet_embedding_dim,
kernel_size=hparams.postnet_kernel_size, stride=1,
padding=int((hparams.postnet_kernel_size - 1) / 2),
dilation=1, w_init_gain='tanh'),
nn.BatchNorm1d(hparams.postnet_embedding_dim))
)
self.convolutions.append(
nn.Sequential(
ConvNorm(hparams.postnet_embedding_dim, hparams.n_mel_channels,
kernel_size=hparams.postnet_kernel_size, stride=1,
padding=int((hparams.postnet_kernel_size - 1) / 2),
dilation=1, w_init_gain='linear'),
nn.BatchNorm1d(hparams.n_mel_channels))
)
def forward(self, x):
for i in range(len(self.convolutions) - 1):
x = F.dropout(torch.tanh(self.convolutions[i](x)), 0.5, self.training)
x = F.dropout(self.convolutions[-1](x), 0.5, self.training)
return x
class Encoder(nn.Module):
"""Encoder module:
- Three 1-d convolution banks
- Bidirectional LSTM
"""
def __init__(self, hparams):
super(Encoder, self).__init__()
convolutions = []
for _ in range(hparams.encoder_n_convolutions):
conv_layer = nn.Sequential(
ConvNorm(hparams.encoder_embedding_dim,
hparams.encoder_embedding_dim,
kernel_size=hparams.encoder_kernel_size, stride=1,
padding=int((hparams.encoder_kernel_size - 1) / 2),
dilation=1, w_init_gain='relu'),
nn.BatchNorm1d(hparams.encoder_embedding_dim))
convolutions.append(conv_layer)
self.convolutions = nn.ModuleList(convolutions)
self.lstm = nn.LSTM(hparams.encoder_embedding_dim,
int(hparams.encoder_embedding_dim / 2), 1,
batch_first=True, bidirectional=True)
def forward(self, x, input_lengths):
for conv in self.convolutions:
x = F.dropout(F.relu(conv(x)), 0.5, self.training)
x = x.transpose(1, 2)
# pytorch tensor are not reversible, hence the conversion
input_lengths = input_lengths.cpu().numpy()
x = nn.utils.rnn.pack_padded_sequence(
x, input_lengths, batch_first=True)
self.lstm.flatten_parameters()
outputs, _ = self.lstm(x)
outputs, _ = nn.utils.rnn.pad_packed_sequence(
outputs, batch_first=True)
return outputs
def inference(self, x):
for conv in self.convolutions:
x = F.dropout(F.relu(conv(x)), 0.5, self.training)
x = x.transpose(1, 2)
self.lstm.flatten_parameters()
outputs, _ = self.lstm(x)
return outputs
class Decoder(nn.Module):
def __init__(self, hparams):
super(Decoder, self).__init__()
self.n_mel_channels = hparams.n_mel_channels
self.n_frames_per_step = hparams.n_frames_per_step
self.encoder_embedding_dim = hparams.encoder_embedding_dim
self.attention_rnn_dim = hparams.attention_rnn_dim
self.decoder_rnn_dim = hparams.decoder_rnn_dim
self.prenet_dim = hparams.prenet_dim
self.max_decoder_steps = hparams.max_decoder_steps
self.gate_threshold = hparams.gate_threshold
self.p_attention_dropout = hparams.p_attention_dropout
self.p_decoder_dropout = hparams.p_decoder_dropout
self.prenet = Prenet(
hparams.n_mel_channels * hparams.n_frames_per_step,
[hparams.prenet_dim, hparams.prenet_dim])
self.attention_rnn = nn.LSTMCell(
hparams.prenet_dim + hparams.encoder_embedding_dim,
hparams.attention_rnn_dim)
self.attention_layer = Attention(
hparams.attention_rnn_dim, hparams.encoder_embedding_dim,
hparams.attention_dim, hparams.attention_location_n_filters,
hparams.attention_location_kernel_size)
self.decoder_rnn = nn.LSTMCell(
hparams.attention_rnn_dim + hparams.encoder_embedding_dim,
hparams.decoder_rnn_dim, 1)
self.linear_projection = LinearNorm(
hparams.decoder_rnn_dim + hparams.encoder_embedding_dim,
hparams.n_mel_channels * hparams.n_frames_per_step)
self.gate_layer = LinearNorm(
hparams.decoder_rnn_dim + hparams.encoder_embedding_dim, 1,
bias=True, w_init_gain='sigmoid')
def get_go_frame(self, memory):
""" Gets all zeros frames to use as first decoder input
PARAMS
------
memory: decoder outputs
RETURNS
-------
decoder_input: all zeros frames
"""
B = memory.size(0)
decoder_input = Variable(memory.data.new(
B, self.n_mel_channels * self.n_frames_per_step).zero_())
return decoder_input
def initialize_decoder_states(self, memory, mask):
""" Initializes attention rnn states, decoder rnn states, attention
weights, attention cumulative weights, attention context, stores memory
and stores processed memory
PARAMS
------
memory: Encoder outputs
mask: Mask for padded data if training, expects None for inference
"""
B = memory.size(0)
MAX_TIME = memory.size(1)
self.attention_hidden = Variable(memory.data.new(
B, self.attention_rnn_dim).zero_())
self.attention_cell = Variable(memory.data.new(
B, self.attention_rnn_dim).zero_())
self.decoder_hidden = Variable(memory.data.new(
B, self.decoder_rnn_dim).zero_())
self.decoder_cell = Variable(memory.data.new(
B, self.decoder_rnn_dim).zero_())
self.attention_weights = Variable(memory.data.new(
B, MAX_TIME).zero_())
self.attention_weights_cum = Variable(memory.data.new(
B, MAX_TIME).zero_())
self.attention_context = Variable(memory.data.new(
B, self.encoder_embedding_dim).zero_())
self.memory = memory
self.processed_memory = self.attention_layer.memory_layer(memory)
self.mask = mask
def parse_decoder_inputs(self, decoder_inputs):
""" Prepares decoder inputs, i.e. mel outputs
PARAMS
------
decoder_inputs: inputs used for teacher-forced training, i.e. mel-specs
RETURNS
-------
inputs: processed decoder inputs
"""
# (B, n_mel_channels, T_out) -> (B, T_out, n_mel_channels)
decoder_inputs = decoder_inputs.transpose(1, 2)
decoder_inputs = decoder_inputs.view(
decoder_inputs.size(0),
int(decoder_inputs.size(1)/self.n_frames_per_step), -1)
# (B, T_out, n_mel_channels) -> (T_out, B, n_mel_channels)
decoder_inputs = decoder_inputs.transpose(0, 1)
return decoder_inputs
def parse_decoder_outputs(self, mel_outputs, gate_outputs, alignments):
""" Prepares decoder outputs for output
PARAMS
------
mel_outputs:
gate_outputs: gate output energies
alignments:
RETURNS
-------
mel_outputs:
gate_outpust: gate output energies
alignments:
"""
# (T_out, B) -> (B, T_out)
alignments = torch.stack(alignments).transpose(0, 1)
# (T_out, B) -> (B, T_out)
gate_outputs = torch.stack(gate_outputs).transpose(0, 1)
gate_outputs = gate_outputs.contiguous()
# (T_out, B, n_mel_channels) -> (B, T_out, n_mel_channels)
mel_outputs = torch.stack(mel_outputs).transpose(0, 1).contiguous()
# decouple frames per step
mel_outputs = mel_outputs.view(
mel_outputs.size(0), -1, self.n_mel_channels)
# (B, T_out, n_mel_channels) -> (B, n_mel_channels, T_out)
mel_outputs = mel_outputs.transpose(1, 2)
return mel_outputs, gate_outputs, alignments
def decode(self, decoder_input):
""" Decoder step using stored states, attention and memory
PARAMS
------
decoder_input: previous mel output
RETURNS
-------
mel_output:
gate_output: gate output energies
attention_weights:
"""
cell_input = torch.cat((decoder_input, self.attention_context), -1)
self.attention_hidden, self.attention_cell = self.attention_rnn(
cell_input, (self.attention_hidden, self.attention_cell))
self.attention_hidden = F.dropout(
self.attention_hidden, self.p_attention_dropout, self.training)
attention_weights_cat = torch.cat(
(self.attention_weights.unsqueeze(1),
self.attention_weights_cum.unsqueeze(1)), dim=1)
self.attention_context, self.attention_weights = self.attention_layer(
self.attention_hidden, self.memory, self.processed_memory,
attention_weights_cat, self.mask)
self.attention_weights_cum += self.attention_weights
decoder_input = torch.cat(
(self.attention_hidden, self.attention_context), -1)
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
decoder_input, (self.decoder_hidden, self.decoder_cell))
self.decoder_hidden = F.dropout(
self.decoder_hidden, self.p_decoder_dropout, self.training)
decoder_hidden_attention_context = torch.cat(
(self.decoder_hidden, self.attention_context), dim=1)
decoder_output = self.linear_projection(
decoder_hidden_attention_context)
gate_prediction = self.gate_layer(decoder_hidden_attention_context)
return decoder_output, gate_prediction, self.attention_weights
def forward(self, memory, decoder_inputs, memory_lengths):
""" Decoder forward pass for training
PARAMS
------
memory: Encoder outputs
decoder_inputs: Decoder inputs for teacher forcing. i.e. mel-specs
memory_lengths: Encoder output lengths for attention masking.
RETURNS
-------
mel_outputs: mel outputs from the decoder
gate_outputs: gate outputs from the decoder
alignments: sequence of attention weights from the decoder
"""
decoder_input = self.get_go_frame(memory).unsqueeze(0)
decoder_inputs = self.parse_decoder_inputs(decoder_inputs)
decoder_inputs = torch.cat((decoder_input, decoder_inputs), dim=0)
decoder_inputs = self.prenet(decoder_inputs)
self.initialize_decoder_states(
memory, mask=~get_mask_from_lengths(memory_lengths))
mel_outputs, gate_outputs, alignments = [], [], []
while len(mel_outputs) < decoder_inputs.size(0) - 1:
decoder_input = decoder_inputs[len(mel_outputs)]
mel_output, gate_output, attention_weights = self.decode(
decoder_input)
mel_outputs += [mel_output.squeeze(1)]
gate_outputs += [gate_output.squeeze(1)]
alignments += [attention_weights]
mel_outputs, gate_outputs, alignments = self.parse_decoder_outputs(
mel_outputs, gate_outputs, alignments)
return mel_outputs, gate_outputs, alignments
def inference(self, memory):
""" Decoder inference
PARAMS
------
memory: Encoder outputs
RETURNS
-------
mel_outputs: mel outputs from the decoder
gate_outputs: gate outputs from the decoder
alignments: sequence of attention weights from the decoder
"""
decoder_input = self.get_go_frame(memory)
self.initialize_decoder_states(memory, mask=None)
mel_outputs, gate_outputs, alignments = [], [], []
while True:
decoder_input = self.prenet(decoder_input)
mel_output, gate_output, alignment = self.decode(decoder_input)
mel_outputs += [mel_output.squeeze(1)]
gate_outputs += [gate_output]
alignments += [alignment]
if torch.sigmoid(gate_output.data) > self.gate_threshold:
break
elif len(mel_outputs) == self.max_decoder_steps:
print("Warning! Reached max decoder steps")
break
decoder_input = mel_output
mel_outputs, gate_outputs, alignments = self.parse_decoder_outputs(
mel_outputs, gate_outputs, alignments)
return mel_outputs, gate_outputs, alignments
class Tacotron2(nn.Module):
def __init__(self, hparams):
super(Tacotron2, self).__init__()
self.mask_padding = hparams.mask_padding
self.fp16_run = hparams.fp16_run
self.n_mel_channels = hparams.n_mel_channels
self.n_frames_per_step = hparams.n_frames_per_step
self.embedding = nn.Embedding(
hparams.n_symbols, hparams.symbols_embedding_dim)
std = sqrt(2.0 / (hparams.n_symbols + hparams.symbols_embedding_dim))
val = sqrt(3.0) * std # uniform bounds for std
self.embedding.weight.data.uniform_(-val, val)
self.encoder = Encoder(hparams)
self.decoder = Decoder(hparams)
self.postnet = Postnet(hparams)
def parse_batch(self, batch):
text_padded, input_lengths, mel_padded, gate_padded, \
output_lengths = batch
text_padded = to_gpu(text_padded).long()
input_lengths = to_gpu(input_lengths).long()
max_len = torch.max(input_lengths.data).item()
mel_padded = to_gpu(mel_padded).float()
gate_padded = to_gpu(gate_padded).float()
output_lengths = to_gpu(output_lengths).long()
return (
(text_padded, input_lengths, mel_padded, max_len, output_lengths),
(mel_padded, gate_padded))
def parse_output(self, outputs, output_lengths=None):
if self.mask_padding and output_lengths is not None:
mask = ~get_mask_from_lengths(output_lengths)
mask = mask.expand(self.n_mel_channels, mask.size(0), mask.size(1))
mask = mask.permute(1, 0, 2)
outputs[0].data.masked_fill_(mask, 0.0)
outputs[1].data.masked_fill_(mask, 0.0)
outputs[2].data.masked_fill_(mask[:, 0, :], 1e3) # gate energies
return outputs
def forward(self, inputs):
text_inputs, text_lengths, mels, max_len, output_lengths = inputs
text_lengths, output_lengths = text_lengths.data, output_lengths.data
embedded_inputs = self.embedding(text_inputs).transpose(1, 2)
encoder_outputs = self.encoder(embedded_inputs, text_lengths)
mel_outputs, gate_outputs, alignments = self.decoder(
encoder_outputs, mels, memory_lengths=text_lengths)
mel_outputs_postnet = self.postnet(mel_outputs)
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
return self.parse_output(
[mel_outputs, mel_outputs_postnet, gate_outputs, alignments],
output_lengths)
def inference(self, inputs):
embedded_inputs = self.embedding(inputs).transpose(1, 2)
encoder_outputs = self.encoder.inference(embedded_inputs)
mel_outputs, gate_outputs, alignments = self.decoder.inference(
encoder_outputs)
mel_outputs_postnet = self.postnet(mel_outputs)
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
outputs = self.parse_output(
[mel_outputs, mel_outputs_postnet, gate_outputs, alignments])
return outputs
@register_model
def register_nv_tacotron2(opt_net, opt):
kw = opt_get(opt_net, ['kwargs'], {})
hparams = create_hparams()
hparams.update(kw)
hparams = munchify(hparams)
return Tacotron2(hparams)
if __name__ == '__main__':
tron = register_nv_tacotron2({}, {})
inputs = torch.randint(high=24, size=(1,12)), torch.tensor([12]), torch.randn((1,80,749)), 800, torch.tensor([749])
out = tron(inputs)
print(out)

View File

@ -0,0 +1,19 @@
Copyright (c) 2017 Keith Ito
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

View File

@ -0,0 +1,74 @@
""" from https://github.com/keithito/tacotron """
import re
from models.tacotron2.text import cleaners
from models.tacotron2.text.symbols import symbols
# Mappings from symbol to numeric ID and vice versa:
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
# Regular expression matching text enclosed in curly braces:
_curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')
def text_to_sequence(text, cleaner_names):
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
The text can optionally have ARPAbet sequences enclosed in curly braces embedded
in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."
Args:
text: string to convert to a sequence
cleaner_names: names of the cleaner functions to run the text through
Returns:
List of integers corresponding to the symbols in the text
'''
sequence = []
# Check for curly braces and treat their contents as ARPAbet:
while len(text):
m = _curly_re.match(text)
if not m:
sequence += _symbols_to_sequence(_clean_text(text, cleaner_names))
break
sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names))
sequence += _arpabet_to_sequence(m.group(2))
text = m.group(3)
return sequence
def sequence_to_text(sequence):
'''Converts a sequence of IDs back to a string'''
result = ''
for symbol_id in sequence:
if symbol_id in _id_to_symbol:
s = _id_to_symbol[symbol_id]
# Enclose ARPAbet back in curly braces:
if len(s) > 1 and s[0] == '@':
s = '{%s}' % s[1:]
result += s
return result.replace('}{', ' ')
def _clean_text(text, cleaner_names):
for name in cleaner_names:
cleaner = getattr(cleaners, name)
if not cleaner:
raise Exception('Unknown cleaner: %s' % name)
text = cleaner(text)
return text
def _symbols_to_sequence(symbols):
return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)]
def _arpabet_to_sequence(text):
return _symbols_to_sequence(['@' + s for s in text.split()])
def _should_keep_symbol(s):
return s in _symbol_to_id and s is not '_' and s is not '~'

View File

@ -0,0 +1,90 @@
""" from https://github.com/keithito/tacotron """
'''
Cleaners are transformations that run over the input text at both training and eval time.
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
1. "english_cleaners" for English text
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
the symbols in symbols.py to match your data).
'''
import re
from unidecode import unidecode
from .numbers import normalize_numbers
# Regular expression matching whitespace:
_whitespace_re = re.compile(r'\s+')
# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
('mrs', 'misess'),
('mr', 'mister'),
('dr', 'doctor'),
('st', 'saint'),
('co', 'company'),
('jr', 'junior'),
('maj', 'major'),
('gen', 'general'),
('drs', 'doctors'),
('rev', 'reverend'),
('lt', 'lieutenant'),
('hon', 'honorable'),
('sgt', 'sergeant'),
('capt', 'captain'),
('esq', 'esquire'),
('ltd', 'limited'),
('col', 'colonel'),
('ft', 'fort'),
]]
def expand_abbreviations(text):
for regex, replacement in _abbreviations:
text = re.sub(regex, replacement, text)
return text
def expand_numbers(text):
return normalize_numbers(text)
def lowercase(text):
return text.lower()
def collapse_whitespace(text):
return re.sub(_whitespace_re, ' ', text)
def convert_to_ascii(text):
return unidecode(text)
def basic_cleaners(text):
'''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
text = lowercase(text)
text = collapse_whitespace(text)
return text
def transliteration_cleaners(text):
'''Pipeline for non-English text that transliterates to ASCII.'''
text = convert_to_ascii(text)
text = lowercase(text)
text = collapse_whitespace(text)
return text
def english_cleaners(text):
'''Pipeline for English text, including number and abbreviation expansion.'''
text = convert_to_ascii(text)
text = lowercase(text)
text = expand_numbers(text)
text = expand_abbreviations(text)
text = collapse_whitespace(text)
return text

View File

@ -0,0 +1,65 @@
""" from https://github.com/keithito/tacotron """
import re
valid_symbols = [
'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1', 'AH2',
'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0', 'AY1', 'AY2',
'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0', 'ER1', 'ER2', 'EY',
'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0', 'IH1', 'IH2', 'IY', 'IY0', 'IY1',
'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0',
'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW',
'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH'
]
_valid_symbol_set = set(valid_symbols)
class CMUDict:
'''Thin wrapper around CMUDict data. http://www.speech.cs.cmu.edu/cgi-bin/cmudict'''
def __init__(self, file_or_path, keep_ambiguous=True):
if isinstance(file_or_path, str):
with open(file_or_path, encoding='latin-1') as f:
entries = _parse_cmudict(f)
else:
entries = _parse_cmudict(file_or_path)
if not keep_ambiguous:
entries = {word: pron for word, pron in entries.items() if len(pron) == 1}
self._entries = entries
def __len__(self):
return len(self._entries)
def lookup(self, word):
'''Returns list of ARPAbet pronunciations of the given word.'''
return self._entries.get(word.upper())
_alt_re = re.compile(r'\([0-9]+\)')
def _parse_cmudict(file):
cmudict = {}
for line in file:
if len(line) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"):
parts = line.split(' ')
word = re.sub(_alt_re, '', parts[0])
pronunciation = _get_pronunciation(parts[1])
if pronunciation:
if word in cmudict:
cmudict[word].append(pronunciation)
else:
cmudict[word] = [pronunciation]
return cmudict
def _get_pronunciation(s):
parts = s.strip().split(' ')
for part in parts:
if part not in _valid_symbol_set:
return None
return ' '.join(parts)

View File

@ -0,0 +1,71 @@
""" from https://github.com/keithito/tacotron """
import inflect
import re
_inflect = inflect.engine()
_comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
_decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
_pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
_dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
_ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
_number_re = re.compile(r'[0-9]+')
def _remove_commas(m):
return m.group(1).replace(',', '')
def _expand_decimal_point(m):
return m.group(1).replace('.', ' point ')
def _expand_dollars(m):
match = m.group(1)
parts = match.split('.')
if len(parts) > 2:
return match + ' dollars' # Unexpected format
dollars = int(parts[0]) if parts[0] else 0
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
if dollars and cents:
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
cent_unit = 'cent' if cents == 1 else 'cents'
return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
elif dollars:
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
return '%s %s' % (dollars, dollar_unit)
elif cents:
cent_unit = 'cent' if cents == 1 else 'cents'
return '%s %s' % (cents, cent_unit)
else:
return 'zero dollars'
def _expand_ordinal(m):
return _inflect.number_to_words(m.group(0))
def _expand_number(m):
num = int(m.group(0))
if num > 1000 and num < 3000:
if num == 2000:
return 'two thousand'
elif num > 2000 and num < 2010:
return 'two thousand ' + _inflect.number_to_words(num % 100)
elif num % 100 == 0:
return _inflect.number_to_words(num // 100) + ' hundred'
else:
return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
else:
return _inflect.number_to_words(num, andword='')
def normalize_numbers(text):
text = re.sub(_comma_number_re, _remove_commas, text)
text = re.sub(_pounds_re, r'\1 pounds', text)
text = re.sub(_dollars_re, _expand_dollars, text)
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
text = re.sub(_ordinal_re, _expand_ordinal, text)
text = re.sub(_number_re, _expand_number, text)
return text

View File

@ -0,0 +1,18 @@
""" from https://github.com/keithito/tacotron """
'''
Defines the set of symbols used in text input to the model.
The default is a set of ASCII characters that works well for English or text that has been run through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details. '''
from models.tacotron2.text import cmudict
_pad = '_'
_punctuation = '!\'(),.:;? '
_special = '-'
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
# Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters):
_arpabet = ['@' + s for s in cmudict.valid_symbols]
# Export all symbols:
symbols = [_pad] + list(_special) + list(_punctuation) + list(_letters) + _arpabet

View File

@ -1,5 +1,5 @@
# Fundamentals
numpy
opencv-python
pyyaml
tb-nightly
future
@ -11,12 +11,20 @@ munch
tqdm
scp
tensorboard
pytorch_fid==0.1.1
kornia
linear_attention_transformer
vector_quantize_pytorch
orjson
einops
gsa-pytorch
lambda-networks
pytorch_ssim
# For image generation stuff
opencv-python
kornia
pytorch_ssim
gsa-pytorch
vector_quantize_pytorch
pytorch_fid==0.1.1
# For audio generation stuff
inflect==0.2.5
librosa==0.6.0
Unidecode==1.0.22

View File

@ -107,7 +107,7 @@ class Trainer:
dataset_ratio = 1 # enlarge the size of each epoch
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
self.train_set = create_dataset(dataset_opt)
self.train_set, collate_fn = create_dataset(dataset_opt, return_collate=True)
train_size = int(math.ceil(len(self.train_set) / dataset_opt['batch_size']))
total_iters = int(opt['train']['niter'])
self.total_epochs = int(math.ceil(total_iters / train_size))
@ -116,15 +116,15 @@ class Trainer:
self.total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio)))
else:
self.train_sampler = None
self.train_loader = create_dataloader(self.train_set, dataset_opt, opt, self.train_sampler)
self.train_loader = create_dataloader(self.train_set, dataset_opt, opt, self.train_sampler, collate_fn=collate_fn)
if self.rank <= 0:
self.logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
len(self.train_set), train_size))
self.logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
self.total_epochs, total_iters))
elif phase == 'val':
self.val_set = create_dataset(dataset_opt)
self.val_loader = create_dataloader(self.val_set, dataset_opt, opt, None)
self.val_set, collate_fn = create_dataset(dataset_opt, return_collate=True)
self.val_loader = create_dataloader(self.val_set, dataset_opt, opt, None, collate_fn=collate_fn)
if self.rank <= 0:
self.logger.info('Number of val images in [{:s}]: {:d}'.format(
dataset_opt['name'], len(self.val_set)))

View File

@ -56,6 +56,9 @@ def create_loss(opt_loss, env):
elif type == 'switch_transformer_balance':
from models.switched_conv.mixture_of_experts import SwitchTransformersLoadBalancingLoss
return SwitchTransformersLoadBalancingLoss(opt_loss, env)
elif type == 'nv_tacotron2_loss':
from models.tacotron2.loss import Tacotron2Loss
return Tacotron2Loss()
else:
raise NotImplementedError