Implement FlowGaussianNll evaluator
This commit is contained in:
parent
edf408508c
commit
8a00f15746
|
@ -1,3 +1,4 @@
|
||||||
|
from models.eval.flow_gaussian_nll import FlowGaussianNll
|
||||||
from models.eval.sr_style import SrStyleTransferEvaluator
|
from models.eval.sr_style import SrStyleTransferEvaluator
|
||||||
from models.eval.style import StyleTransferEvaluator
|
from models.eval.style import StyleTransferEvaluator
|
||||||
|
|
||||||
|
@ -8,5 +9,7 @@ def create_evaluator(model, opt_eval, env):
|
||||||
return StyleTransferEvaluator(model, opt_eval, env)
|
return StyleTransferEvaluator(model, opt_eval, env)
|
||||||
elif type == 'sr_stylegan':
|
elif type == 'sr_stylegan':
|
||||||
return SrStyleTransferEvaluator(model, opt_eval, env)
|
return SrStyleTransferEvaluator(model, opt_eval, env)
|
||||||
|
elif type == 'flownet_gaussian':
|
||||||
|
return FlowGaussianNll(model, opt_eval, env)
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
37
codes/models/eval/flow_gaussian_nll.py
Normal file
37
codes/models/eval/flow_gaussian_nll.py
Normal file
|
@ -0,0 +1,37 @@
|
||||||
|
import os
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import os.path as osp
|
||||||
|
import torchvision
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
import models.eval.evaluator as evaluator
|
||||||
|
from pytorch_fid import fid_score
|
||||||
|
|
||||||
|
|
||||||
|
# Evaluate how close to true Gaussian a flow network predicts in a "normal" pass given a LQ/HQ image pair.
|
||||||
|
from data.image_folder_dataset import ImageFolderDataset
|
||||||
|
from models.archs.srflow_orig.flow import GaussianDiag
|
||||||
|
|
||||||
|
|
||||||
|
class FlowGaussianNll(evaluator.Evaluator):
|
||||||
|
def __init__(self, model, opt_eval, env):
|
||||||
|
super().__init__(model, opt_eval, env)
|
||||||
|
self.batch_sz = opt_eval['batch_size']
|
||||||
|
self.dataset = ImageFolderDataset(opt_eval['dataset'])
|
||||||
|
self.dataloader = DataLoader(self.dataset, self.batch_sz)
|
||||||
|
|
||||||
|
def perform_eval(self):
|
||||||
|
total_zs = 0
|
||||||
|
z_loss = 0
|
||||||
|
with torch.no_grad():
|
||||||
|
for batch in self.dataloader:
|
||||||
|
z, _, _ = self.model(gt=batch['GT'],
|
||||||
|
lr=batch['LQ'],
|
||||||
|
epses=[],
|
||||||
|
reverse=False,
|
||||||
|
add_gt_noise=False)
|
||||||
|
for z_ in z:
|
||||||
|
z_loss += GaussianDiag.logp(None, None, z_).mean()
|
||||||
|
total_zs += 1
|
||||||
|
return {"gaussian_diff": z_loss / total_zs}
|
|
@ -291,7 +291,7 @@ class Trainer:
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgsetext_rrdb4x_6bl_bigbatch.yml')
|
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgsetext_rrdb_bigboi.yml')
|
||||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||||
parser.add_argument('--local_rank', type=int, default=0)
|
parser.add_argument('--local_rank', type=int, default=0)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
Loading…
Reference in New Issue
Block a user