Implement FlowGaussianNll evaluator

This commit is contained in:
James Betker 2020-12-02 14:09:54 -07:00
parent edf408508c
commit 8a00f15746
3 changed files with 41 additions and 1 deletions

View File

@ -1,3 +1,4 @@
from models.eval.flow_gaussian_nll import FlowGaussianNll
from models.eval.sr_style import SrStyleTransferEvaluator from models.eval.sr_style import SrStyleTransferEvaluator
from models.eval.style import StyleTransferEvaluator from models.eval.style import StyleTransferEvaluator
@ -8,5 +9,7 @@ def create_evaluator(model, opt_eval, env):
return StyleTransferEvaluator(model, opt_eval, env) return StyleTransferEvaluator(model, opt_eval, env)
elif type == 'sr_stylegan': elif type == 'sr_stylegan':
return SrStyleTransferEvaluator(model, opt_eval, env) return SrStyleTransferEvaluator(model, opt_eval, env)
elif type == 'flownet_gaussian':
return FlowGaussianNll(model, opt_eval, env)
else: else:
raise NotImplementedError() raise NotImplementedError()

View File

@ -0,0 +1,37 @@
import os
import torch
import os.path as osp
import torchvision
from torch.utils.data import DataLoader
import models.eval.evaluator as evaluator
from pytorch_fid import fid_score
# Evaluate how close to true Gaussian a flow network predicts in a "normal" pass given a LQ/HQ image pair.
from data.image_folder_dataset import ImageFolderDataset
from models.archs.srflow_orig.flow import GaussianDiag
class FlowGaussianNll(evaluator.Evaluator):
def __init__(self, model, opt_eval, env):
super().__init__(model, opt_eval, env)
self.batch_sz = opt_eval['batch_size']
self.dataset = ImageFolderDataset(opt_eval['dataset'])
self.dataloader = DataLoader(self.dataset, self.batch_sz)
def perform_eval(self):
total_zs = 0
z_loss = 0
with torch.no_grad():
for batch in self.dataloader:
z, _, _ = self.model(gt=batch['GT'],
lr=batch['LQ'],
epses=[],
reverse=False,
add_gt_noise=False)
for z_ in z:
z_loss += GaussianDiag.logp(None, None, z_).mean()
total_zs += 1
return {"gaussian_diff": z_loss / total_zs}

View File

@ -291,7 +291,7 @@ class Trainer:
if __name__ == '__main__': if __name__ == '__main__':
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgsetext_rrdb4x_6bl_bigbatch.yml') parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgsetext_rrdb_bigboi.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0) parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args() args = parser.parse_args()