Misc changes

This commit is contained in:
James Betker 2020-05-14 20:45:38 -06:00
parent a946483f1c
commit 8a514b9645
5 changed files with 109 additions and 10 deletions

View File

@ -12,18 +12,18 @@ import data.util as data_util # noqa: E402
def main():
mode = 'pair' # single (one input folder) | pair (extract corresponding GT and LR pairs)
mode = 'single' # single (one input folder) | pair (extract corresponding GT and LR pairs)
opt = {}
opt['n_thread'] = 20
opt['compression_level'] = 3 # 3 is the default value in cv2
# CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer
# compression time. If read raw images during training, use 0 for faster IO speed.
if mode == 'single':
opt['input_folder'] = '../../datasets/div2k/DIV2K_train_HR'
opt['save_folder'] = '../../datasets/div2k/DIV2K800_sub'
opt['crop_sz'] = 480 # the size of each sub-image
opt['step'] = 240 # step of the sliding crop window
opt['thres_sz'] = 48 # size threshold
opt['input_folder'] = 'D:\\vix_cropped'
opt['save_folder'] = 'D:\\vix_tiled'
opt['crop_sz'] = 800 # the size of each sub-image
opt['step'] = 640 # step of the sliding crop window
opt['thres_sz'] = 200 # size threshold
extract_signle(opt)
elif mode == 'pair':
GT_folder = '../../datasets/div2k/DIV2K_train_HR'

View File

@ -48,7 +48,7 @@ network_D:
path:
pretrain_model_G: ~
pretrain_model_D: ~
resume_state: ~
resume_state: ../experiments/train_vix_corrupt/training_state/47000.state
strict_load: true
#### training settings: learning rate scheme, loss
@ -74,7 +74,7 @@ train:
pixel_criterion: l2
pixel_weight: !!float 1e-2
feature_criterion: l1
feature_weight: 1.0
feature_weight: .5
feature_weight_decay: .98
feature_weight_decay_steps: 1000
feature_weight_minimum: .5

View File

@ -0,0 +1,97 @@
#### general settings
name: train_vix_corrupt_tiled
use_tb_logger: true
model: corruptgan
distortion: downsample
scale: 1
gpu_ids: [0]
amp_opt_level: O0
#### datasets
datasets:
train:
name: vix_corrupt
mode: downsample
dataroot_GT: H:\\vix\\lr
dataroot_LQ: H:\\ultra_lq\\tiled\\lr
mismatched_Data_OK: true
use_shuffle: true
n_workers: 14 # per GPU
batch_size: 48
target_size: 64
use_flip: true
use_rot: true
doCrop: false
color: RGB
val:
name: vix_val
mode: downsample
target_size: 64
dataroot_GT: E:\\4k6k\\datasets\\vixen\\val
dataroot_LQ: E:\\4k6k\\datasets\\vixen\\val
#### network structures
network_G:
which_model_G: ResGenV2
nf: 192
nb_denoiser: 20
nb_upsampler: 0
upscale_applications: 0
inject_noise: False
network_D:
which_model_D: discriminator_vgg_128
in_nc: 3
nf: 64
#### path
path:
pretrain_model_G: ~
pretrain_model_D: ~
resume_state: ../experiments/train_vix_corrupt_tiled/training_state/5000.state
strict_load: true
#### training settings: learning rate scheme, loss
train:
lr_G: !!float 1e-4
weight_decay_G: 0
beta1_G: 0.9
beta2_G: 0.99
lr_D: !!float 1e-4
weight_decay_D: 0
beta1_D: 0.9
beta2_D: 0.99
D_noise_theta_init: .01
D_noise_final_it: 20000
D_noise_theta_floor: .005
lr_scheme: MultiStepLR
niter: 400000
warmup_iter: -1 # no warm up
lr_steps: [15000, 50000, 100000, 200000]
lr_gamma: 0.5
pixel_criterion: l2
pixel_weight: !!float 1e-2
feature_criterion: l1
feature_weight: .9
feature_weight_decay: .98
feature_weight_decay_steps: 1000
feature_weight_minimum: .5
gan_type: ragan # gan | ragan
gan_weight: .1
mega_batch_factor: 2
swapout_G_freq: 113
swapout_D_freq: 223
swapout_duration: 40
D_update_ratio: 1
D_init_iters: -1
manual_seed: 10
val_freq: !!float 5e2
#### logger
logger:
print_freq: 50
save_checkpoint_freq: 500

View File

@ -4,4 +4,6 @@ rm lr/*
rm pix/*
rm ref/*
rm genlr/*
rm genmr/*
rm genmr/*
rm lr_precorrupt/*
rm ref/*

View File

@ -30,7 +30,7 @@ def init_dist(backend='nccl', **kwargs):
def main():
#### options
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='options/train/train_vix_corrupt.yml')
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='options/train/train_vix_corrupt_tiled.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)