UnifiedGptVoice!

This commit is contained in:
James Betker 2021-12-23 15:20:26 -07:00
parent 5bc9772cb0
commit 8b19c37409
3 changed files with 100 additions and 59 deletions

View File

@ -99,7 +99,7 @@ class GrandConjoinedDataset(torch.utils.data.Dataset):
'paired_text_tokens': snt['padded_text'], 'paired_text_tokens': snt['padded_text'],
'paired_file': snt['filenames'], 'paired_file': snt['filenames'],
'speech_audio': snt['wav'], 'speech_audio': snt['wav'],
'speech_lengths': snt['wav_lengths'], 'speech_audio_lengths': snt['wav_lengths'],
'speech_file': snt['filenames'], 'speech_file': snt['filenames'],
'text_text': snt['real_text'], 'text_text': snt['real_text'],
'text_tokens': snt['padded_text'], 'text_tokens': snt['padded_text'],
@ -114,7 +114,7 @@ class GrandConjoinedDataset(torch.utils.data.Dataset):
'paired_text_tokens': snt['padded_text'], 'paired_text_tokens': snt['padded_text'],
'paired_file': snt['filenames'], 'paired_file': snt['filenames'],
'speech_audio': sp['clip'], 'speech_audio': sp['clip'],
'speech_lengths': clamp(sp['clip_lengths'], 0, self.max_solo_audio_length), 'speech_audio_lengths': clamp(sp['clip_lengths'], 0, self.max_solo_audio_length),
'speech_file': sp['path'], 'speech_file': sp['path'],
'text_text': txt, 'text_text': txt,
'text_tokens': txt_tok, 'text_tokens': txt_tok,

View File

@ -38,7 +38,15 @@ class ConditioningEncoder(nn.Module):
return h[:, :, 0] return h[:, :, 0]
class GptTtsHf(nn.Module): class UnifiedGptVoice(nn.Module):
"""
Derived from GptTtsHf, but offers multiple modes of operation:
- Text only
- Voice only
- Text conditioned on voice
- Voice conditioned on text
"""
NUMBER_TEXT_TOKENS = 10000 # The number of tokens produced by our bespoke BPE tokenizer. NUMBER_TEXT_TOKENS = 10000 # The number of tokens produced by our bespoke BPE tokenizer.
START_TEXT_TOKEN = 9999 START_TEXT_TOKEN = 9999
STOP_TEXT_TOKEN = 0 STOP_TEXT_TOKEN = 0
@ -79,87 +87,120 @@ class GptTtsHf(nn.Module):
tar = F.pad(input, (0,1), value=stop_token) tar = F.pad(input, (0,1), value=stop_token)
return inp, tar return inp, tar
def get_logits(self, text_inputs, cond_input, mel_inputs, get_attns=False): def set_mel_padding(self, mel_input_tokens, wav_lengths):
text_emb = self.text_embedding(text_inputs)
cond = self.conditioning_encoder(cond_input).unsqueeze(1)
mel_emb = self.gpt.get_input_embeddings()(mel_inputs)
emb = torch.cat([text_emb, cond, mel_emb], dim=1)
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns)
if get_attns:
return gpt_out.attentions
enc = gpt_out.last_hidden_state
text_logits = self.final_norm(enc[:, :text_emb.shape[1]])
text_logits = self.text_head(text_logits)
text_logits = text_logits.permute(0,2,1)
mel_logits = self.final_norm(enc[:, -mel_emb.shape[1]:])
mel_logits = self.mel_head(mel_logits)
mel_logits = mel_logits.permute(0,2,1)
return text_logits, mel_logits
def forward(self, text_inputs, cond_input, mel_targets, wav_lengths, return_attentions=False):
""" """
Forward pass Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
text_inputs: long tensor, (b,t) that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
cond_inputs: MEL float tensor, (b,c,80,s) preformatting to create a working TTS model.
mel_targets: long tensor, (b,m)
mel_lengths: long tensor, (b,)
""" """
# Set padding areas within MEL (currently it is coded with the MEL code for <zero>). # Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
mel_lengths = wav_lengths // self.mel_length_compression mel_lengths = wav_lengths // self.mel_length_compression
for b in range(len(mel_lengths)): for b in range(len(mel_lengths)):
if mel_lengths[b] < mel_targets.shape[-1]: actual_end = mel_lengths[b] + 1 # Due to the convolutional nature of how these tokens are generated, it would be best if the model predicts a token past the actual last token.
mel_targets[b, mel_lengths[b]:] = self.STOP_MEL_TOKEN if actual_end < mel_input_tokens.shape[-1]:
mel_input_tokens[b, actual_end:] = self.STOP_MEL_TOKEN
return mel_input_tokens
# Randomly permute the conditioning spectrogram, to destroy any structure present. def randomly_permute_conditioning_input(self, speech_conditioning_input):
cond_input = cond_input[:,:,torch.randperm(cond_input.shape[-1])] """
Randomly permute the conditioning spectrogram, to destroy any structure present. Note that since the
conditioning input is derived from a discrete spectrogram, it does actually retain structure, but only a little
bit (actually: exactly how much we want; enough to discriminate different vocal qualities, but nothing about
what is being said).
"""
cond_input = speech_conditioning_input[:,:,torch.randperm(speech_conditioning_input.shape[-1])]
if cond_input.shape[-1] > self.max_conditioning_length: if cond_input.shape[-1] > self.max_conditioning_length:
cond_input = cond_input[:,:,:self.max_conditioning_length] cond_input = cond_input[:,:,:self.max_conditioning_length]
return cond_input
def get_logits(self, speech_conditioning_input, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False):
if second_inputs is not None:
emb = torch.cat([speech_conditioning_input, first_inputs, second_inputs], dim=1)
else:
emb = torch.cat([speech_conditioning_input, first_inputs], dim=1)
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns)
if get_attns:
return gpt_out.attentions
enc = gpt_out.last_hidden_state[:, 1:] # The first logit is tied to the speech_conditioning_input
first_logits = self.final_norm(enc[:, :first_inputs.shape[1]])
first_logits = first_head(first_logits)
first_logits = first_logits.permute(0,2,1)
if second_inputs is not None:
second_logits = self.final_norm(enc[:, -second_inputs.shape[1]:])
second_logits = second_head(second_logits)
second_logits = second_logits.permute(0,2,1)
return first_logits, second_logits
else:
return first_logits
def forward(self, speech_conditioning_input, text_inputs, mel_inputs, wav_lengths, text_first=True, return_attentions=False):
"""
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
(actuated by `text_first`).
speech_conditioning_input: MEL float tensor, (b,80,s)
text_inputs: long tensor, (b,t)
mel_inputs: long tensor, (b,m)
wav_lengths: long tensor, (b,)
"""
mel_inputs = self.set_mel_padding(mel_inputs, wav_lengths)
speech_conditioning_input = self.randomly_permute_conditioning_input(speech_conditioning_input)
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.START_TEXT_TOKEN, self.STOP_TEXT_TOKEN) text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.START_TEXT_TOKEN, self.STOP_TEXT_TOKEN)
mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_targets, self.START_MEL_TOKEN, self.STOP_MEL_TOKEN) text_emb = self.text_embedding(text_inputs)
text_logits, mel_logits = self.get_logits(text_inputs, cond_input, mel_inputs, get_attns=return_attentions) mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_inputs, self.START_MEL_TOKEN, self.STOP_MEL_TOKEN)
mel_emb = self.gpt.get_input_embeddings()(mel_inputs)
if text_first:
text_logits, mel_logits = self.get_logits(speech_conditioning_input, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions)
else:
mel_logits, text_logits = self.get_logits(speech_conditioning_input, mel_emb, self.mel_head, text_emb, self.text_head, get_attns=return_attentions)
if return_attentions: if return_attentions:
return mel_logits return mel_logits
loss_text = F.cross_entropy(text_logits, text_targets.long()) loss_text = F.cross_entropy(text_logits, text_targets.long())
loss_mel = F.cross_entropy(mel_logits, mel_targets.long()) loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
return loss_text.mean(), loss_mel.mean(), mel_logits return loss_text.mean(), loss_mel.mean(), mel_logits
def inference(self, text_inputs, cond_input, **hf_generate_kwargs): def text_forward(self, speech_conditioning_input, text_inputs):
if not hasattr(self, 'inference_model'): """
self.inference_model = GPT2InferenceModel(self.gpt_config, self.gpt, None, self.final_norm, self.mel_head) Performs autoregressive modeling on only text. Still requires a speech_conditioning_input due to the way the
model inputs are formatted. Just provide any audio clip (arguably, zeros could be provided).
"""
speech_conditioning_input = self.randomly_permute_conditioning_input(speech_conditioning_input)
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)
text_inputs = F.pad(text_inputs, (0, self.max_symbols_per_phrase - text_inputs.shape[1]), value=self.STOP_TEXT_TOKEN)
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.START_TEXT_TOKEN, self.STOP_TEXT_TOKEN) text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.START_TEXT_TOKEN, self.STOP_TEXT_TOKEN)
text_emb = self.text_embedding(text_inputs) text_emb = self.text_embedding(text_inputs)
text_logits = self.get_logits(speech_conditioning_input, text_emb, self.text_head)
loss_text = F.cross_entropy(text_logits, text_targets.long())
return loss_text.mean()
# Randomly permute the conditioning spectrogram, to destroy any structure present. def speech_forward(self, speech_conditioning_input, mel_inputs, wav_lengths):
cond_input = cond_input[:,:,torch.randperm(cond_input.shape[-1])] """
if cond_input.shape[-1] > self.max_conditioning_length: Performs autoregressive modeling on only speech data.
cond_input = cond_input[:,:,:self.max_conditioning_length] """
cond = self.conditioning_encoder(cond_input).unsqueeze(1) mel_inputs = self.set_mel_padding(mel_inputs, wav_lengths)
speech_conditioning_input = self.randomly_permute_conditioning_input(speech_conditioning_input)
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)
emb = torch.cat([text_emb, cond], dim=1) mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_inputs, self.START_MEL_TOKEN, self.STOP_MEL_TOKEN)
self.inference_model.store_mel_emb(emb) mel_emb = self.gpt.get_input_embeddings()(mel_inputs)
mel_logits = self.get_logits(speech_conditioning_input, mel_emb, self.mel_head)
fake_inputs = torch.full((emb.shape[0],emb.shape[1]+1,), fill_value=1, dtype=torch.long, device=text_inputs.device) loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
fake_inputs[:,-1] = self.START_MEL_TOKEN return loss_mel.mean()
gen = self.inference_model.generate(fake_inputs, bos_token_id=self.START_MEL_TOKEN, pad_token_id=self.STOP_MEL_TOKEN, eos_token_id=self.STOP_MEL_TOKEN,
max_length=emb.shape[1]+self.max_mel_tokens, **hf_generate_kwargs)
return gen[:, fake_inputs.shape[1]:]
@register_model @register_model
def register_gpt_tts_hf(opt_net, opt): def register_unified_gpt_voice(opt_net, opt):
return GptTtsHf(**opt_get(opt_net, ['kwargs'], {})) return UnifiedGptVoice(**opt_get(opt_net, ['kwargs'], {}))
if __name__ == '__main__': if __name__ == '__main__':
gpt = GptTtsHf(model_dim=1024, heads=16) gpt = UnifiedGptVoice(model_dim=256, heads=4)
l = gpt(torch.randint(high=len(symbols), size=(2,200)), l = gpt(torch.randn(2, 80, 800),
torch.arange(0, 80, 1, dtype=torch.float).view(1,80,1).repeat(2,1,800), torch.randint(high=len(symbols), size=(2,80)),
torch.randint(high=8192, size=(2,250)), torch.randint(high=8192, size=(2,250)),
torch.tensor([150*256,195*256])) torch.tensor([150*256,195*256]))

View File

@ -286,7 +286,7 @@ class Trainer:
if __name__ == '__main__': if __name__ == '__main__':
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_gpt_tts.yml') parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_gpt_unified_voice.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0) parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args() args = parser.parse_args()