diff --git a/codes/test.py b/codes/test.py index 40231805..f025290b 100644 --- a/codes/test.py +++ b/codes/test.py @@ -1,42 +1,151 @@ +import os.path as osp +import logging +import time +import argparse +from collections import OrderedDict + +import os +import options.options as option +import utils.util as util +from data.util import bgr2ycbcr +import models.archs.SwitchedResidualGenerator_arch as srg +from switched_conv_util import save_attention_to_image, save_attention_to_image_rgb +from switched_conv import compute_attention_specificity +from data import create_dataset, create_dataloader +from models import create_model +from tqdm import tqdm import torch +import models.networks as networks -class CheckpointFunction(torch.autograd.Function): - @staticmethod - def forward(ctx, run_function, length, *args): - ctx.run_function = run_function - ctx.input_tensors = list(args[:length]) - ctx.input_params = list(args[length:]) - with torch.no_grad(): - output_tensors = ctx.run_function(*ctx.input_tensors) - return output_tensors +# Concepts: Swap transformations around. Normalize attention. Disable individual switches, both randomly and one at +# a time, starting at the last switch. Pick random regions in an image and print out the full attention vector for +# each switch. Yield an output directory name for each alteration and None when last alteration is completed. +def alter_srg(srg: srg.ConfigurableSwitchedResidualGenerator2): + # First alteration, strip off switches one at a time. + yield "naked" + + ''' + for i in range(1, len(srg.switches)): + srg.switches = srg.switches[:-i] + yield "stripped-%i" % (i,) + ''' + + for sw in srg.switches: + sw.set_temperature(.001) + yield "specific" + + for sw in srg.switches: + sw.set_temperature(1000) + yield "normalized" + + for sw in srg.switches: + sw.set_temperature(1) + sw.switch.attention_norm = None + yield "no_anorm" + return None + +def analyze_srg(srg: srg.ConfigurableSwitchedResidualGenerator2, path, alteration_suffix): + mean_hists = [compute_attention_specificity(att, 2) for att in srg.attentions] + means = [i[0] for i in mean_hists] + hists = [torch.histc(i[1].clone().detach().cpu().flatten().float(), bins=srg.transformation_counts) for i in mean_hists] + hists = [h / torch.sum(h) for h in hists] + for i in range(len(means)): + print("%s - switch_%i_specificity" % (alteration_suffix, i), means[i]) + print("%s - switch_%i_histogram" % (alteration_suffix, i), hists[i]) + + [save_attention_to_image_rgb(path, srg.attentions[i], srg.transformation_counts, alteration_suffix, i) for i in range(len(srg.attentions))] + + +def forward_pass(model, output_dir, alteration_suffix=''): + model.feed_data(data, need_GT=need_GT) + model.test() + + visuals = model.get_current_visuals(need_GT)['rlt'].cpu() + fea_loss = 0 + for i in range(visuals.shape[0]): + img_path = data['GT_path'][i] if need_GT else data['LQ_path'][i] + img_name = osp.splitext(osp.basename(img_path))[0] + + sr_img = util.tensor2img(visuals[i]) # uint8 + + # save images + suffix = alteration_suffix + if suffix: + save_img_path = osp.join(output_dir, img_name + suffix + '.png') + else: + save_img_path = osp.join(output_dir, img_name + '.png') + + if need_GT: + fea_loss += model.compute_fea_loss(visuals[i], data['GT'][i]) + + util.save_img(sr_img, save_img_path) + return fea_loss - @staticmethod - def backward(ctx, *output_grads): - for i in range(len(ctx.input_tensors)): - temp = ctx.input_tensors[i] - ctx.input_tensors[i] = temp.detach() - ctx.input_tensors[i].requires_grad = True - with torch.enable_grad(): - output_tensors = ctx.run_function(*ctx.input_tensors) - print("Backpropping") - input_grads = torch.autograd.grad(output_tensors, ctx.input_tensors + ctx.input_params, output_grads, allow_unused=True) - return (None, None) + input_grads -from models.archs.arch_util import ConvGnSilu -import torch.nn as nn if __name__ == "__main__": - model = nn.Sequential(ConvGnSilu(3, 64, 3, norm=False), - ConvGnSilu(64, 3, 3, norm=False) - ) - model.train() - seed = torch.randn(1,3,32,32) - recurrent = seed - outs = [] - for i in range(10): - args = (recurrent, ) + tuple(model.parameters()) - recurrent = CheckpointFunction.apply(model, 1, *args) - outs.append(recurrent) + #### options + torch.backends.cudnn.benchmark = True + srg_analyze = False + parser = argparse.ArgumentParser() + parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/srgan_compute_feature.yml') + opt = option.parse(parser.parse_args().opt, is_train=False) + opt = option.dict_to_nonedict(opt) - l = nn.L1Loss()(recurrent, torch.randn(1,3,32,32)) - l.backward() \ No newline at end of file + util.mkdirs( + (path for key, path in opt['path'].items() + if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) + util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO, + screen=True, tofile=True) + logger = logging.getLogger('base') + logger.info(option.dict2str(opt)) + + #### Create test dataset and dataloader + test_loaders = [] + for phase, dataset_opt in sorted(opt['datasets'].items()): + test_set = create_dataset(dataset_opt) + test_loader = create_dataloader(test_set, dataset_opt) + logger.info('Number of test images in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set))) + test_loaders.append(test_loader) + + model = create_model(opt) + fea_loss = 0 + for test_loader in test_loaders: + test_set_name = test_loader.dataset.opt['name'] + logger.info('\nTesting [{:s}]...'.format(test_set_name)) + test_start_time = time.time() + dataset_dir = osp.join(opt['path']['results_root'], test_set_name) + util.mkdir(dataset_dir) + + test_results = OrderedDict() + test_results['psnr'] = [] + test_results['ssim'] = [] + test_results['psnr_y'] = [] + test_results['ssim_y'] = [] + + tq = tqdm(test_loader) + for data in tq: + need_GT = False if test_loader.dataset.opt['dataroot_GT'] is None else True + + if srg_analyze: + orig_model = model.netG + model_copy = networks.define_G(opt).to(model.device) + model_copy.load_state_dict(orig_model.state_dict()) + model.netG = model_copy + for alteration_suffix in alter_srg(model_copy): + alt_path = osp.join(dataset_dir, alteration_suffix) + img_path = data['GT_path'][0] if need_GT else data['LQ_path'][0] + img_name = osp.splitext(osp.basename(img_path))[0] + opt['name'] + alteration_suffix += img_name + os.makedirs(alt_path, exist_ok=True) + forward_pass(model, dataset_dir, alteration_suffix) + analyze_srg(model_copy, alt_path, alteration_suffix) + # Reset model and do next alteration. + model_copy = networks.define_G(opt).to(model.device) + model_copy.load_state_dict(orig_model.state_dict()) + model.netG = model_copy + else: + fea_loss += forward_pass(model, dataset_dir, opt['name']) + + # log + logger.info('# Validation # Fea: {:.4e}'.format(fea_loss / len(test_loader)))