Lots more config files

This commit is contained in:
James Betker 2020-04-23 23:58:27 -06:00
parent ea5f432f5a
commit 8ead9ae183
6 changed files with 291 additions and 8 deletions

View File

@ -23,5 +23,4 @@ network_G:
#### path #### path
path: path:
pretrain_model_G: ../experiments/ESRGANx4_blacked_ft/models/31500_G.pth pretrain_model_G: ../experiments/ESRGANx4_blacked_ramped_feat/models/35000_G.pth
pretrain_model_D: ../experiments/ESRGANx4_blacked_ft/models/31500_D.pth

View File

@ -0,0 +1,29 @@
name: RRDB_ESRGAN_x4
suffix: ~ # add suffix to saved images
model: corruptgan
distortion: downsample
scale: 4
crop_border: ~ # crop border when evaluation. If None(~), crop the scale pixels
gpu_ids: [0]
datasets:
test_1: # the 1st test dataset
name: vixen
mode: downsample
dataroot_GT: K:\4k6k\vixen4k\hr
dataroot_LQ: K:\4k6k\vixen4k\lr
batch_size: 100
n_workers: 4 # per GPU
target_size: 64
#### network structures
network_G:
which_model_G: HighToLowResNet
in_nc: 3
out_nc: 3
nf: 128
nb: 30
#### path
path:
pretrain_model_G: ../experiments/blacked_adrianna_corrupt_G.pth

View File

@ -1,5 +1,5 @@
#### general settings #### general settings
name: ESRGANx4_blacked_lqprn name: ESRGANx4_blacked_ramped_feat
use_tb_logger: true use_tb_logger: true
model: srgan model: srgan
distortion: sr distortion: sr
@ -43,8 +43,8 @@ network_D:
#### path #### path
path: path:
pretrain_model_G: ../experiments/blacked_gen_20000_epochs.pth pretrain_model_G: ../experiments/blacked_ft_G.pth
pretrain_model_D: ../experiments/blacked_disc_20000_epochs.pth pretrain_model_D: ../experiments/blacked_ft_D.pth
resume_state: ~ resume_state: ~
strict_load: true strict_load: true
@ -62,13 +62,16 @@ train:
niter: 400000 niter: 400000
warmup_iter: -1 # no warm up warmup_iter: -1 # no warm up
lr_steps: [10000, 30000, 50000, 70000] lr_steps: [10000, 20000, 30000, 40000, 50000]
lr_gamma: 0.5 lr_gamma: 0.5
pixel_criterion: l1 pixel_criterion: l1
pixel_weight: !!float 5e-3 pixel_weight: !!float 1e-2
feature_criterion: l1 feature_criterion: l1
feature_weight: 1 feature_weight: !!float 1e0
feature_weight_decay: .95
feature_weight_decay_steps: 2500
feature_weight_minimum: !!float 1e-3
gan_type: ragan # gan | ragan gan_type: ragan # gan | ragan
gan_weight: !!float 1e-1 gan_weight: !!float 1e-1

View File

@ -0,0 +1,85 @@
#### general settings
name: ESRGANx4_blacked_for_adrianna
use_tb_logger: true
model: srgan
distortion: sr
scale: 4
gpu_ids: [0]
amp_opt_level: O1
#### datasets
datasets:
train:
name: vixen
mode: LQGT
dataroot_GT: K:\4k6k\vixen4k\hr
dataroot_LQ: E:\4k6k\mmsr\results\RRDB_ESRGAN_x4\vixen
use_shuffle: true
n_workers: 4 # per GPU
batch_size: 12
target_size: 256
use_flip: false
use_rot: false
color: RGB
val:
name: adrianna_val
mode: LQGT
dataroot_GT: ../datasets/adrianna/val/hr
dataroot_LQ: ../datasets/adrianna/val/lr
#### network structures
network_G:
which_model_G: RRDBNet
in_nc: 3
out_nc: 3
nf: 64
nb: 23
network_D:
which_model_D: discriminator_vgg_128
in_nc: 3
nf: 64
#### path
path:
pretrain_model_G: ../experiments/blacked_ft_G.pth
pretrain_model_D: ../experiments/blacked_ft_D.pth
resume_state: ~
strict_load: true
#### training settings: learning rate scheme, loss
train:
lr_G: !!float 1e-4
weight_decay_G: 0
beta1_G: 0.9
beta2_G: 0.99
lr_D: !!float 1e-4
weight_decay_D: 0
beta1_D: 0.9
beta2_D: 0.99
lr_scheme: MultiStepLR
niter: 400000
warmup_iter: -1 # no warm up
lr_steps: [10000, 20000, 30000, 40000, 50000]
lr_gamma: 0.5
pixel_criterion: l1
pixel_weight: !!float 1e-2
feature_criterion: l1
feature_weight: !!float 1e0
feature_weight_decay: 1
feature_weight_decay_steps: 2500
feature_weight_minimum: !!float 1e-3
gan_type: ragan # gan | ragan
gan_weight: !!float 1e-2
D_update_ratio: 1
D_init_iters: 0
manual_seed: 10
val_freq: !!float 5e2
#### logger
logger:
print_freq: 50
save_checkpoint_freq: !!float 5e2

View File

@ -0,0 +1,84 @@
#### general settings
name: ESRGAN_adrianna_corrupt_finetune
use_tb_logger: true
model: corruptgan
distortion: downsample
scale: 4
gpu_ids: [0]
amp_opt_level: O1
#### datasets
datasets:
train:
name: blacked
mode: downsample
dataroot_GT: ../datasets/blacked/train/hr
dataroot_LQ: ../datasets/adrianna/train/lr
mismatched_Data_OK: true
use_shuffle: true
n_workers: 4 # per GPU
batch_size: 16
target_size: 64
use_flip: false
use_rot: false
color: RGB
val:
name: blacked_val
mode: downsample
target_size: 64
dataroot_GT: ../datasets/blacked/val/hr
dataroot_LQ: ../datasets/blacked/val/lr
#### network structures
network_G:
which_model_G: HighToLowResNet
in_nc: 3
out_nc: 3
nf: 128
nb: 30
network_D:
which_model_D: discriminator_vgg_128
in_nc: 3
nf: 96
#### path
path:
pretrain_model_G: ../experiments/blacked_lqprn_corrupt_G.pth
pretrain_model_D: ../experiments/blacked_lqprn_corrupt_D.pth
resume_state: ~
strict_load: true
#### training settings: learning rate scheme, loss
train:
lr_G: !!float 1e-5
weight_decay_G: 0
beta1_G: 0.9
beta2_G: 0.99
lr_D: !!float 1e-5
weight_decay_D: 0
beta1_D: 0.9
beta2_D: 0.99
lr_scheme: MultiStepLR
niter: 400000
warmup_iter: -1 # no warm up
lr_steps: [1000, 2000, 3000]
lr_gamma: 0.5
pixel_criterion: l1
pixel_weight: !!float 1e-2
feature_criterion: l1
feature_weight: 0
gan_type: gan # gan | ragan
gan_weight: !!float 1e-1
D_update_ratio: 1
D_init_iters: 0
manual_seed: 10
val_freq: !!float 5e2
#### logger
logger:
print_freq: 50
save_checkpoint_freq: !!float 5e2

View File

@ -0,0 +1,83 @@
#### general settings
name: ESRGAN_blacked_corrupt_lqprn
use_tb_logger: true
model: corruptgan
distortion: downsample
scale: 4
gpu_ids: [0]
amp_opt_level: O1
#### datasets
datasets:
train:
name: blacked
mode: downsample
dataroot_GT: ../datasets/blacked/train/hr
dataroot_LQ: ../datasets/lqprn/train/lr
mismatched_Data_OK: false
use_shuffle: true
n_workers: 4 # per GPU
batch_size: 16
target_size: 64
use_flip: false
use_rot: false
color: RGB
val:
name: blacked_val
mode: downsample
target_size: 64
dataroot_GT: ../datasets/blacked/val/hr
dataroot_LQ: ../datasets/blacked/val/lr
#### network structures
network_G:
which_model_G: HighToLowResNet
in_nc: 3
out_nc: 3
nf: 128
nb: 30
network_D:
which_model_D: discriminator_vgg_128
in_nc: 3
nf: 96
#### path
path:
pretrain_model_G: ~
resume_state: ~
strict_load: true
#### training settings: learning rate scheme, loss
train:
lr_G: !!float 1e-4
weight_decay_G: 0
beta1_G: 0.9
beta2_G: 0.99
lr_D: !!float 1e-4
weight_decay_D: 0
beta1_D: 0.9
beta2_D: 0.99
lr_scheme: MultiStepLR
niter: 400000
warmup_iter: -1 # no warm up
lr_steps: [1000, 2000, 3500, 5000, 6500]
lr_gamma: 0.5
pixel_criterion: l1
pixel_weight: !!float 1e-2
feature_criterion: l1
feature_weight: 0
gan_type: gan # gan | ragan
gan_weight: !!float 1e-1
D_update_ratio: 1
D_init_iters: 0
manual_seed: 10
val_freq: !!float 5e2
#### logger
logger:
print_freq: 50
save_checkpoint_freq: !!float 5e2