More cleaning

This commit is contained in:
James Betker 2022-03-16 12:05:56 -06:00
parent d186414566
commit 95ea0a592f
32 changed files with 38 additions and 66 deletions

View File

@ -33,33 +33,33 @@ def create_dataset(dataset_opt, return_collate=False):
# datasets for image restoration
if mode == 'fullimage':
from data.full_image_dataset import FullImageDataset as D
from data.images.full_image_dataset import FullImageDataset as D
elif mode == 'single_image_extensible':
from data.single_image_dataset import SingleImageDataset as D
from data.images.single_image_dataset import SingleImageDataset as D
elif mode == 'multi_frame_extensible':
from data.multi_frame_dataset import MultiFrameDataset as D
from data.images.multi_frame_dataset import MultiFrameDataset as D
elif mode == 'combined':
from data.combined_dataset import CombinedDataset as D
elif mode == 'multiscale':
from data.multiscale_dataset import MultiScaleDataset as D
from data.images.multiscale_dataset import MultiScaleDataset as D
elif mode == 'paired_frame':
from data.paired_frame_dataset import PairedFrameDataset as D
from data.images.paired_frame_dataset import PairedFrameDataset as D
elif mode == 'stylegan2':
from data.stylegan2_dataset import Stylegan2Dataset as D
from data.images.stylegan2_dataset import Stylegan2Dataset as D
elif mode == 'imagefolder':
from data.image_folder_dataset import ImageFolderDataset as D
from data.images.image_folder_dataset import ImageFolderDataset as D
elif mode == 'torch_dataset':
from data.torch_dataset import TorchDataset as D
elif mode == 'byol_dataset':
from data.byol_attachment import ByolDatasetWrapper as D
from data.images.byol_attachment import ByolDatasetWrapper as D
elif mode == 'byol_structured_dataset':
from data.byol_attachment import StructuredCropDatasetWrapper as D
from data.images.byol_attachment import StructuredCropDatasetWrapper as D
elif mode == 'random_aug_wrapper':
from data.byol_attachment import DatasetRandomAugWrapper as D
from data.images.byol_attachment import DatasetRandomAugWrapper as D
elif mode == 'random_dataset':
from data.random_dataset import RandomDataset as D
from data.images.random_dataset import RandomDataset as D
elif mode == 'zipfile':
from data.zip_file_dataset import ZipFileDataset as D
from data.images.zip_file_dataset import ZipFileDataset as D
elif mode == 'nv_tacotron':
from data.audio.nv_tacotron_dataset import TextWavLoader as D
from data.audio.nv_tacotron_dataset import TextMelCollate as C

View File

View File

@ -1,7 +1,7 @@
import torch
from torch.utils import data
from data.image_corruptor import ImageCorruptor
from data.chunk_with_reference import ChunkWithReference
from data.images.image_corruptor import ImageCorruptor
from data.images.chunk_with_reference import ChunkWithReference
import os
import cv2
import numpy as np

View File

@ -1,24 +1,19 @@
import functools
import glob
import itertools
import random
import cv2
import kornia
import numpy as np
import pytorch_ssim
import torch
import os
import torchvision
from torch.utils.data import DataLoader
from torchvision.transforms import Normalize, CenterCrop
from torchvision.transforms import Normalize
from tqdm import tqdm
from data import util
# Builds a dataset created from a simple folder containing a list of training/test/validation images.
from data.image_corruptor import ImageCorruptor, kornia_color_jitter_numpy
from data.image_label_parser import VsNetImageLabeler
from data.images.image_corruptor import ImageCorruptor, kornia_color_jitter_numpy
from data.images.image_label_parser import VsNetImageLabeler
from utils.util import opt_get

View File

@ -1,11 +1,3 @@
import glob
import itertools
import random
import cv2
import kornia
import numpy as np
import pytorch_ssim
import torch
import os
@ -13,14 +5,10 @@ import torchvision
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torchvision.transforms import Normalize
from tqdm import tqdm
from data import util
# Builds a dataset created from a simple folder containing a list of training/test/validation images.
from data.image_corruptor import ImageCorruptor
from data.image_label_parser import VsNetImageLabeler
from utils.util import opt_get
class ImagePairWithCorrespondingPointsDataset(Dataset):
@ -70,7 +58,7 @@ if __name__ == '__main__':
'path': 'F:\\dlas\\codes\\scripts\\ui\\image_pair_labeler\\results',
'size': 256
}
output_path = '.'
output_path = '..'
ds = DataLoader(ImagePairWithCorrespondingPointsDataset(opt), shuffle=True, num_workers=0)
for i, d in tqdm(enumerate(ds)):

View File

@ -1,4 +1,4 @@
from data.base_unsupervised_image_dataset import BaseUnsupervisedImageDataset
from data.images.base_unsupervised_image_dataset import BaseUnsupervisedImageDataset
import numpy as np
import torch
from bisect import bisect_left

View File

@ -4,13 +4,9 @@ import cv2
import torch
import torch.utils.data as data
import data.util as util
from PIL import Image, ImageOps
from io import BytesIO
import torchvision.transforms.functional as F
# Reads full-quality images and pulls tiles at regular zoom intervals from them. Only usable for training purposes.
from data.image_corruptor import ImageCorruptor
from data.images.image_corruptor import ImageCorruptor
# Selects the smallest dimension from the image and crops it randomly so the other dimension matches. The cropping

View File

@ -1,4 +1,4 @@
from data.base_unsupervised_image_dataset import BaseUnsupervisedImageDataset
from data.images.base_unsupervised_image_dataset import BaseUnsupervisedImageDataset
import numpy as np
import torch
from bisect import bisect_left

View File

@ -2,8 +2,7 @@ import random
from bisect import bisect_left
import numpy as np
import torch
from torch.utils import data
from data.base_unsupervised_image_dataset import BaseUnsupervisedImageDataset
from data.images.base_unsupervised_image_dataset import BaseUnsupervisedImageDataset
# Builds a dataset composed of a set of folders. Each folder represents a single high resolution image that has been

View File

@ -1,10 +1,9 @@
import torch
from torch.utils.data import Dataset
import torchvision.transforms as T
from torchvision import datasets
# Wrapper for basic pytorch datasets which re-wraps them into a format usable by ExtensibleTrainer.
from data.cifar import CIFAR100, CIFAR10
from data.images.cifar import CIFAR100, CIFAR10
from utils.util import opt_get

View File

@ -9,7 +9,7 @@ import torchvision
from kornia import filters
from torch import nn
from data.byol_attachment import RandomApply
from data.images.byol_attachment import RandomApply
from trainer.networks import register_model, create_model
from utils.util import checkpoint, opt_get

View File

@ -4,7 +4,7 @@ import torch
import torch.nn.functional as F
from torch import nn
from data.byol_attachment import reconstructed_shared_regions
from data.images.byol_attachment import reconstructed_shared_regions
from models.image_latents.byol.byol_model_wrapper import singleton, EMA, get_module_device, set_requires_grad, \
update_moving_average
from trainer.networks import create_model, register_model

View File

@ -9,7 +9,7 @@ from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor
from tqdm import tqdm
from data.image_folder_dataset import ImageFolderDataset
from data.images.image_folder_dataset import ImageFolderDataset
from models.classifiers.resnet_with_checkpointing import resnet50
# Computes the structural euclidean distance between [x,y]. "Structural" here means the [h,w] dimensions are preserved

View File

@ -9,7 +9,7 @@ from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor, Normalize
from tqdm import tqdm
from data.image_folder_dataset import ImageFolderDataset
from data.images.image_folder_dataset import ImageFolderDataset
from models.segformer.segformer import Segformer
# Computes the structural euclidean distance between [x,y]. "Structural" here means the [h,w] dimensions are preserved

View File

@ -10,7 +10,7 @@ from torchvision.transforms import ToTensor, Resize
from tqdm import tqdm
import numpy as np
from data.image_folder_dataset import ImageFolderDataset
from data.images.image_folder_dataset import ImageFolderDataset
from models.image_latents.spinenet_arch import SpineNet

View File

@ -13,7 +13,7 @@ from tqdm import tqdm
import utils.options as option
import utils
from data.image_corruptor import ImageCorruptor
from data.images.image_corruptor import ImageCorruptor
from trainer.ExtensibleTrainer import ExtensibleTrainer
from utils import util

View File

@ -11,7 +11,7 @@ import torch
import torchvision
from PIL import ImageTk
from data.image_label_parser import VsNetImageLabeler
from data.images.image_label_parser import VsNetImageLabeler
from scripts.ui.image_labeler.pretrained_image_patch_classifier import PretrainedImagePatchClassifier
# Globals used to define state that event handlers might operate on.

View File

@ -1,6 +1,6 @@
import orjson
from data.image_label_parser import VsNetImageLabeler
from data.images.image_label_parser import VsNetImageLabeler
# Translates from the label JSON output of the VS.NET UI to something more compact and usable.

View File

@ -3,7 +3,7 @@ import shutil
from torch.utils.data import DataLoader
from data.single_image_dataset import SingleImageDataset
from data.images.single_image_dataset import SingleImageDataset
from tqdm import tqdm
import torch

View File

@ -5,7 +5,7 @@ import torch
import torchvision
from torch.cuda.amp import autocast
from data.multiscale_dataset import build_multiscale_patch_index_map
from data.images.multiscale_dataset import build_multiscale_patch_index_map
from trainer.inject import Injector
from trainer.losses import extract_params_from_state
import os.path as osp

View File

@ -5,7 +5,7 @@ from tqdm import tqdm
import trainer.eval.evaluator as evaluator
# Evaluate how close to true Gaussian a flow network predicts in a "normal" pass given a LQ/HQ image pair.
from data.image_folder_dataset import ImageFolderDataset
from data.images.image_folder_dataset import ImageFolderDataset
from models.image_generation.srflow import GaussianDiag

View File

@ -1,18 +1,13 @@
import os
import torch
import os.path as osp
import torchvision
from torch.nn import MSELoss
from torch.utils.data import DataLoader
from tqdm import tqdm
import trainer.eval.evaluator as evaluator
from pytorch_fid import fid_score
from data.image_pair_with_corresponding_points_dataset import ImagePairWithCorrespondingPointsDataset
from data.images.image_pair_with_corresponding_points_dataset import ImagePairWithCorrespondingPointsDataset
from models.segformer.segformer import Segformer
from utils.util import opt_get
# Uses two datasets: a "similar" and "dissimilar" dataset, each of which contains pairs of images and similar/dissimilar
# points in those datasets. Uses the provided network to compute a latent vector for both similar and dissimilar.

View File

@ -11,7 +11,7 @@ from pytorch_fid import fid_score
# Evaluate that feeds a LR structure into the input, then calculates a FID score on the results added to
# the interpolated LR structure.
from data.stylegan2_dataset import Stylegan2Dataset
from data.images.stylegan2_dataset import Stylegan2Dataset
class SrStyleTransferEvaluator(evaluator.Evaluator):