Add mel_encoder and solo embeddings to unified_voice

This commit is contained in:
James Betker 2022-01-04 15:15:58 -07:00
parent 2165124f19
commit 963c6072bb
3 changed files with 45 additions and 18 deletions

View File

@ -250,7 +250,7 @@ class GptAsrHf2(nn.Module):
# This model uses its own positional embeddings, which helps discriminate between text and audio MELs.
self.text_pos_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim)
self.mel_pos_embedding = nn.Embedding(self.max_mel_frames, model_dim)
self.text_solo_embedding = nn.Parameter(torch.randn(1,1,512) * self.gpt.config.initializer_range, requires_grad=True)
self.text_solo_embedding = nn.Parameter(torch.randn(1,1,model_dim) * self.gpt.config.initializer_range, requires_grad=True)
# Head layers
self.final_norm = nn.LayerNorm(model_dim)

View File

@ -7,6 +7,7 @@ from transformers import GPT2Model, GPT2Config
from models.arch_util import AttentionBlock
from models.gpt_voice.gpt_asr_hf import GPT2InferenceModel
from models.gpt_voice.gpt_asr_hf2 import ResBlock
from models.tacotron2.text import symbols
from trainer.networks import register_model
from utils.util import opt_get
@ -34,6 +35,30 @@ class ConditioningEncoder(nn.Module):
return h[:, :, 0]
class MelEncoder(nn.Module):
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2):
super().__init__()
self.channels = channels
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=3, padding=1),
nn.Sequential(*[ResBlock(channels//4) for _ in range(resblocks_per_reduction)]),
nn.Conv1d(channels//4, channels//2, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(channels//16, channels//2),
nn.ReLU(),
nn.Sequential(*[ResBlock(channels//2) for _ in range(resblocks_per_reduction)]),
nn.Conv1d(channels//2, channels, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(channels//8, channels),
nn.ReLU(),
nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]),
)
self.reduction = 4
def forward(self, x):
for e in self.encoder:
x = e(x)
return x
def null_position_embeddings(range, dim):
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
@ -50,7 +75,7 @@ class UnifiedGptVoice(nn.Module):
def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=120, max_mel_tokens=250, max_total_tokens=370, max_conditioning_inputs=3,
checkpointing=True, mel_length_compression=1024, max_conditioning_length=60, number_text_tokens=256,
start_text_token=255, stop_text_token=0, number_mel_codes=8194, start_mel_token=8192,
stop_mel_token=8193, use_dedicated_position_embeddings_for_paired=True, shuffle_conditioning=True):
stop_mel_token=8193, shuffle_conditioning=True, train_solo_embeddings=False, use_mel_codes_as_input=True):
super().__init__()
self.number_text_tokens = number_text_tokens
@ -69,14 +94,8 @@ class UnifiedGptVoice(nn.Module):
self.mel_length_compression = mel_length_compression
self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads)
self.text_embedding = nn.Embedding(self.number_text_tokens, model_dim)
self.text_pos_solo_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim)
self.mel_pos_solo_embedding = nn.Embedding(self.max_mel_tokens + 1, model_dim)
if use_dedicated_position_embeddings_for_paired:
self.mel_pos_paired_embedding = nn.Embedding(self.max_mel_tokens + 1, model_dim)
self.text_pos_paired_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim)
else:
self.mel_pos_paired_embedding = self.mel_pos_solo_embedding
self.text_pos_paired_embedding = self.text_pos_solo_embedding
self.text_pos_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim)
self.mel_pos_embedding = nn.Embedding(self.max_mel_tokens + 1, model_dim)
seq_length = 2+self.max_total_tokens+self.max_conditioning_inputs
self.gpt_config = GPT2Config(vocab_size=self.number_mel_codes,
n_positions=seq_length,
@ -87,18 +106,26 @@ class UnifiedGptVoice(nn.Module):
gradient_checkpointing=checkpointing,
use_cache=not checkpointing)
self.gpt = GPT2Model(self.gpt_config)
if train_solo_embeddings:
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * self.gpt.config.initializer_range, requires_grad=True)
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * self.gpt.config.initializer_range, requires_grad=True)
else:
self.mel_solo_embedding = 0
self.text_solo_embedding = 0
# Override the built in positional embeddings
del self.gpt.wpe
self.gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
if not use_mel_codes_as_input:
self.gpt.wte = MelEncoder(model_dim, resblocks_per_reduction=1)
self.final_norm = nn.LayerNorm(model_dim)
self.text_head = nn.Linear(model_dim, self.number_text_tokens)
self.mel_head = nn.Linear(model_dim, self.number_mel_codes)
self.max_conditioning_length = max_conditioning_length
# Initialize the embeddings per the GPT-2 scheme
for module in [self.text_embedding, self.text_pos_solo_embedding, self.text_pos_paired_embedding,
self.mel_pos_solo_embedding, self.mel_pos_paired_embedding]:
for module in [self.text_embedding, self.text_pos_embedding, self.mel_pos_embedding]:
module.weight.data.normal_(mean=0.0, std=self.gpt.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@ -177,10 +204,10 @@ class UnifiedGptVoice(nn.Module):
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
text_emb = self.text_embedding(text_inputs) + self.text_pos_paired_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device))
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device))
mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_inputs, self.start_mel_token, self.stop_mel_token)
mel_emb = self.gpt.get_input_embeddings()(mel_inputs)
mel_emb = mel_emb + self.mel_pos_paired_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
if text_first:
text_logits, mel_logits = self.get_logits(speech_conditioning_input, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions)
else:
@ -204,7 +231,7 @@ class UnifiedGptVoice(nn.Module):
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
text_emb = self.text_embedding(text_inputs) + self.text_pos_solo_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device))
text_emb = self.text_embedding(text_inputs) + self.text_pos_solo_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) + self.text_solo_embedding
text_logits = self.get_logits(speech_conditioning_input, text_emb, self.text_head)
loss_text = F.cross_entropy(text_logits, text_targets.long())
return loss_text.mean()
@ -222,7 +249,7 @@ class UnifiedGptVoice(nn.Module):
mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_inputs, self.start_mel_token, self.stop_mel_token)
mel_emb = self.gpt.get_input_embeddings()(mel_inputs)
mel_emb = mel_emb + self.mel_pos_solo_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
mel_emb = mel_emb + self.mel_pos_solo_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device)) + self.mel_solo_embedding
mel_logits = self.get_logits(speech_conditioning_input, mel_emb, self.mel_head)
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
return loss_mel.mean()
@ -256,7 +283,7 @@ def register_unified_gpt_voice(opt_net, opt):
if __name__ == '__main__':
gpt = UnifiedGptVoice(model_dim=256, heads=4, use_dedicated_position_embeddings_for_paired=False)
gpt = UnifiedGptVoice(model_dim=256, heads=4, train_solo_embeddings=True)
l = gpt(torch.randn(2, 80, 800),
torch.randint(high=len(symbols), size=(2,80)),
torch.randint(high=8192, size=(2,250)),

View File

@ -286,7 +286,7 @@ class Trainer:
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_gpt_asr_mass_hf2.yml')
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_mel_encoder_pred_codes.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()