Allow injection of random low-amplitude noise & motion blur into generator

This commit is contained in:
James Betker 2020-05-27 08:04:11 -06:00
parent 69cbfa2f0c
commit 96ac26a8b7

View File

@ -63,6 +63,13 @@ class LQGTDataset(data.Dataset):
self.PIX_env = lmdb.open(self.opt['dataroot_PIX'], readonly=True, lock=False, readahead=False, self.PIX_env = lmdb.open(self.opt['dataroot_PIX'], readonly=True, lock=False, readahead=False,
meminit=False) meminit=False)
def motion_blur(self, image, size, angle):
k = np.zeros((size, size), dtype=np.float32)
k[(size - 1) // 2, :] = np.ones(size, dtype=np.float32)
k = cv2.warpAffine(k, cv2.getRotationMatrix2D((size / 2 - 0.5, size / 2 - 0.5), angle, 1.0), (size, size))
k = k * (1.0 / np.sum(k))
return cv2.filter2D(image, -1, k)
def __getitem__(self, index): def __getitem__(self, index):
if self.data_type == 'lmdb' and (self.GT_env is None or self.LQ_env is None): if self.data_type == 'lmdb' and (self.GT_env is None or self.LQ_env is None):
self._init_lmdb() self._init_lmdb()
@ -144,8 +151,14 @@ class LQGTDataset(data.Dataset):
self.opt['use_rot']) self.opt['use_rot'])
if self.opt['use_blurring']: if self.opt['use_blurring']:
blur_sig = int(random.randrange(0, 3)) # Pick randomly between gaussian, motion, or no blur.
img_LQ = cv2.GaussianBlur(img_LQ, (3, 3), blur_sig) blur_det = random.randint(0, 100)
if blur_det < 40:
blur_sig = int(random.randrange(0, 3))
img_LQ = cv2.GaussianBlur(img_LQ, (3, 3), blur_sig)
elif blur_det < 70:
img_LQ = self.motion_blur(img_LQ, random.randrange(0,8), random.randint(0, 360))
if self.opt['color']: # change color space if necessary if self.opt['color']: # change color space if necessary
img_LQ = util.channel_convert(C, self.opt['color'], img_LQ = util.channel_convert(C, self.opt['color'],
@ -171,6 +184,9 @@ class LQGTDataset(data.Dataset):
img_PIX = torch.from_numpy(np.ascontiguousarray(np.transpose(img_PIX, (2, 0, 1)))).float() img_PIX = torch.from_numpy(np.ascontiguousarray(np.transpose(img_PIX, (2, 0, 1)))).float()
img_LQ = F.to_tensor(img_LQ) img_LQ = F.to_tensor(img_LQ)
lq_noise = torch.randn_like(img_LQ) * 5 / 255
img_LQ += lq_noise
if LQ_path is None: if LQ_path is None:
LQ_path = GT_path LQ_path = GT_path
return {'LQ': img_LQ, 'GT': img_GT, 'PIX': img_PIX, 'LQ_path': LQ_path, 'GT_path': GT_path} return {'LQ': img_LQ, 'GT': img_GT, 'PIX': img_PIX, 'LQ_path': LQ_path, 'GT_path': GT_path}