Add use_generator_as_filter

This commit is contained in:
James Betker 2020-10-16 20:43:55 -06:00
parent 617d97e19d
commit 96f1be30ed

View File

@ -0,0 +1,81 @@
import os.path as osp
import logging
import time
import argparse
import os
import utils
from models.ExtensibleTrainer import ExtensibleTrainer
from models.networks import define_F
from models.steps.losses import FeatureLoss
from utils import options as option
import utils.util as util
from data import create_dataset, create_dataloader
from tqdm import tqdm
import torch
import torchvision
if __name__ == "__main__":
bin_path = "f:\\binned"
good_path = "f:\\good"
os.makedirs(bin_path, exist_ok=True)
os.makedirs(good_path, exist_ok=True)
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../../options/generator_filter.yml')
opt = option.parse(parser.parse_args().opt, is_train=False)
opt = option.dict_to_nonedict(opt)
opt['dist'] = False
util.mkdirs(
(path for key, path in opt['path'].items()
if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key))
util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
#### Create test dataset and dataloader
test_loaders = []
for phase, dataset_opt in sorted(opt['datasets'].items()):
test_set = create_dataset(dataset_opt)
test_loader = create_dataloader(test_set, dataset_opt, opt=opt)
logger.info('Number of test images in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set)))
test_loaders.append(test_loader)
model = ExtensibleTrainer(opt)
utils.util.loaded_options = opt
fea_loss = 0
for test_loader in test_loaders:
test_set_name = test_loader.dataset.opt['name']
logger.info('\nTesting [{:s}]...'.format(test_set_name))
test_start_time = time.time()
dataset_dir = osp.join(opt['path']['results_root'], test_set_name)
util.mkdir(dataset_dir)
netF = define_F(which_model='vgg').to(model.env['device'])
tq = tqdm(test_loader)
removed = 0
means = []
for data in tq:
model.feed_data(data, need_GT=True)
model.test()
gen = model.eval_state['gen'][0].to(model.env['device'])
feagen = netF(gen)
feareal = netF(data['GT'].to(model.env['device']))
losses = torch.sum(torch.abs(feareal - feagen), dim=(1,2,3))
means.append(torch.mean(losses).item())
#print(sum(means)/len(means), torch.mean(losses), torch.max(losses), torch.min(losses))
for i in range(losses.shape[0]):
if losses[i] < 25000:
os.remove(data['GT_path'][i])
removed += 1
#imname = osp.basename(data['GT_path'][i])
#if losses[i] < 25000:
# torchvision.utils.save_image(data['GT'][i], osp.join(bin_path, imname))
print("Removed %i/%i images" % (removed, len(test_set)))