misc nonfunctional
This commit is contained in:
parent
3125ca38f5
commit
973f47c525
|
@ -9,6 +9,7 @@ from transformers.utils.model_parallel_utils import get_device_map, assert_devic
|
|||
|
||||
from models.tacotron2.text import symbols
|
||||
from trainer.networks import register_model
|
||||
from utils.audio import plot_spectrogram
|
||||
from utils.util import opt_get
|
||||
|
||||
|
||||
|
@ -248,6 +249,7 @@ class GptAsrHf2(nn.Module):
|
|||
return text_logits
|
||||
|
||||
def forward(self, mel_inputs, text_targets, return_attentions=False):
|
||||
plot_spectrogram(mel_inputs[0].cpu())
|
||||
text_targets = F.pad(text_targets, (0,1)) # Pad the targets with a <0> so that all have a "stop" token.
|
||||
text_logits = self.get_logits(mel_inputs, text_targets, get_attns=return_attentions)
|
||||
if return_attentions:
|
||||
|
|
|
@ -1,13 +1,8 @@
|
|||
import pathlib
|
||||
|
||||
import numpy
|
||||
import torch
|
||||
from scipy.io import wavfile
|
||||
from tqdm import tqdm
|
||||
import matplotlib.pyplot as plt
|
||||
import librosa
|
||||
|
||||
from models.waveglow.waveglow import WaveGlow
|
||||
from utils.audio import plot_spectrogram
|
||||
|
||||
|
||||
class Vocoder:
|
||||
|
@ -25,18 +20,6 @@ class Vocoder:
|
|||
return self.model.infer(mel)
|
||||
|
||||
|
||||
def plot_spectrogram(spec, title=None, ylabel="freq_bin", aspect="auto", xmax=None):
|
||||
fig, axs = plt.subplots(1, 1)
|
||||
axs.set_title(title or "Spectrogram (db)")
|
||||
axs.set_ylabel(ylabel)
|
||||
axs.set_xlabel("frame")
|
||||
im = axs.imshow(librosa.power_to_db(spec), origin="lower", aspect=aspect)
|
||||
if xmax:
|
||||
axs.set_xlim((0, xmax))
|
||||
fig.colorbar(im, ax=axs)
|
||||
plt.show(block=False)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
vocoder = Vocoder()
|
||||
m = torch.load('test_mels.pth')
|
||||
|
|
|
@ -5,8 +5,10 @@ import torchaudio.functional
|
|||
from kornia.augmentation import RandomResizedCrop
|
||||
from torch.cuda.amp import autocast
|
||||
|
||||
from data.audio.unsupervised_audio_dataset import load_audio
|
||||
from trainer.inject import Injector, create_injector
|
||||
from trainer.losses import extract_params_from_state
|
||||
from utils.audio import plot_spectrogram
|
||||
from utils.util import opt_get
|
||||
from utils.weight_scheduler import get_scheduler_for_opt
|
||||
|
||||
|
@ -568,7 +570,7 @@ class TorchMelSpectrogramInjector(Injector):
|
|||
self.mel_fmax = opt_get(opt, ['mel_fmax'], 8000)
|
||||
self.sampling_rate = opt_get(opt, ['sampling_rate'], 22050)
|
||||
self.mel_stft = torchaudio.transforms.MelSpectrogram(n_fft=self.filter_length, hop_length=self.hop_length,
|
||||
win_length=self.win_length, power=2, normalized=True,
|
||||
win_length=self.win_length, power=2, normalized=False,
|
||||
sample_rate=self.sampling_rate, f_min=self.mel_fmin,
|
||||
f_max=self.mel_fmax, n_mels=self.n_mel_channels)
|
||||
|
||||
|
@ -582,6 +584,14 @@ class TorchMelSpectrogramInjector(Injector):
|
|||
return {self.output: mel}
|
||||
|
||||
|
||||
def test_torch_mel_injector():
|
||||
a = load_audio('D:\\data\\audio\\libritts\\train-clean-100\\19\\198\\19_198_000000_000000.wav', 22050)
|
||||
inj = TorchMelSpectrogramInjector({'in': 'in', 'out': 'out'}, {})
|
||||
f = inj({'in': a.unsqueeze(0)})['out']
|
||||
plot_spectrogram(f[0])
|
||||
print('Pause')
|
||||
|
||||
|
||||
class RandomAudioCropInjector(Injector):
|
||||
def __init__(self, opt, env):
|
||||
super().__init__(opt, env)
|
||||
|
@ -606,6 +616,10 @@ class AudioResampleInjector(Injector):
|
|||
return {self.output: torchaudio.functional.resample(inp, self.input_sr, self.output_sr)}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
def test_audio_resample_injector():
|
||||
inj = AudioResampleInjector({'in': 'x', 'out': 'y', 'input_sample_rate': 22050, 'output_sample_rate': '1'}, None)
|
||||
print(inj({'x':torch.rand(10,1,40800)})['y'].shape)
|
||||
print(inj({'x':torch.rand(10,1,40800)})['y'].shape)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_torch_mel_injector()
|
14
codes/utils/audio.py
Normal file
14
codes/utils/audio.py
Normal file
|
@ -0,0 +1,14 @@
|
|||
import librosa
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def plot_spectrogram(spec, title=None, ylabel="freq_bin", aspect="auto", xmax=None):
|
||||
fig, axs = plt.subplots(1, 1)
|
||||
axs.set_title(title or "Spectrogram (db)")
|
||||
axs.set_ylabel(ylabel)
|
||||
axs.set_xlabel("frame")
|
||||
im = axs.imshow(librosa.power_to_db(spec), origin="lower", aspect=aspect)
|
||||
if xmax:
|
||||
axs.set_xlim((0, xmax))
|
||||
fig.colorbar(im, ax=axs)
|
||||
plt.show(block=False)
|
Loading…
Reference in New Issue
Block a user