Additional work for audio xformer (which doesnt really do a great job)

This commit is contained in:
James Betker 2021-07-23 10:58:14 -06:00
parent 2325e7a88c
commit 97d7cbbc34
3 changed files with 156 additions and 2 deletions

View File

@ -0,0 +1,149 @@
import math
from typing import Optional
import torch
from torch import nn, Tensor
from torch.nn import functional as F
import torch.distributed as distributed
from models.vqvae.vqvae import Quantize
from trainer.networks import register_model
from utils.util import checkpoint, opt_get
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1)]
return self.dropout(x)
class TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
layer_norm_eps=1e-5, device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super(TransformerEncoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=True,
**factory_kwargs)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward, **factory_kwargs)
self.linear2 = nn.Linear(dim_feedforward, d_model, **factory_kwargs)
self.norm1 = nn.BatchNorm1d(d_model)
self.norm2 = nn.BatchNorm1d(d_model)
self.activation = nn.ReLU()
def __setstate__(self, state):
if 'activation' not in state:
state['activation'] = F.relu
super(TransformerEncoderLayer, self).__setstate__(state)
def forward(self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None) -> Tensor:
src2 = self.self_attn(src, src, src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
src = src + src2
src = self.norm1(src.permute(0,2,1)).permute(0,2,1)
src2 = self.linear2(self.activation(self.linear1(src)))
src = src + src2
src = self.norm2(src.permute(0,2,1)).permute(0,2,1)
return src
class Encoder(nn.Module):
def __init__(self, in_channel, channel, output_breadth, num_layers=8, compression_factor=8):
super().__init__()
self.compression_factor = compression_factor
self.pre_conv_stack = nn.Sequential(nn.Conv1d(in_channel, channel//4, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv1d(channel//4, channel//2, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv1d(channel//2, channel//2, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv1d(channel//2, channel, kernel_size=3, stride=2, padding=1))
self.norm1 = nn.BatchNorm1d(channel)
self.positional_embeddings = PositionalEncoding(channel, max_len=output_breadth//4)
self.encode = nn.TransformerEncoder(TransformerEncoderLayer(d_model=channel, nhead=4, dim_feedforward=channel*2), num_layers=num_layers)
def forward(self, input):
x = self.norm1(self.pre_conv_stack(input)).permute(0,2,1)
x = self.positional_embeddings(x)
x = self.encode(x)
return x[:,:input.shape[2]//self.compression_factor,:]
class Decoder(nn.Module):
def __init__(
self, in_channel, out_channel, channel, output_breadth, num_layers=6
):
super().__init__()
self.initial_conv = nn.Conv1d(in_channel, channel, kernel_size=1)
self.expand = output_breadth
self.positional_embeddings = PositionalEncoding(channel, max_len=output_breadth)
self.encode = nn.TransformerEncoder(TransformerEncoderLayer(d_model=channel, nhead=4, dim_feedforward=channel*2), num_layers=num_layers)
self.final_conv_stack = nn.Sequential(nn.Conv1d(channel, channel, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv1d(channel, out_channel, kernel_size=3, padding=1))
def forward(self, input):
x = self.initial_conv(input.permute(0,2,1)).permute(0,2,1)
x = nn.functional.pad(x, (0,0,0, self.expand-input.shape[1]))
x = self.positional_embeddings(x)
x = self.encode(x).permute(0,2,1)
return self.final_conv_stack(x)
class VQVAE(nn.Module):
def __init__(
self,
data_channels=1,
channel=256,
codebook_dim=256,
codebook_size=512,
breadth=80,
):
super().__init__()
self.enc = Encoder(data_channels, channel, breadth)
self.quantize_dense = nn.Linear(channel, codebook_dim)
self.quantize = Quantize(codebook_dim, codebook_size)
self.dec = Decoder(codebook_dim, data_channels, channel, breadth)
def forward(self, input):
input = input.unsqueeze(1)
quant, diff, _ = self.encode(input)
dec = checkpoint(self.dec, quant)
dec = dec.squeeze(1)
return dec, diff
def encode(self, input):
enc = checkpoint(self.enc, input)
quant = self.quantize_dense(enc)
quant, diff, id = self.quantize(quant)
diff = diff.unsqueeze(0)
return quant, diff, id
@register_model
def register_vqvae_xform_audio(opt_net, opt):
kw = opt_get(opt_net, ['kwargs'], {})
vq = VQVAE(**kw)
return vq
if __name__ == '__main__':
model = VQVAE()
res=model(torch.randn(4,80))
print(res[0].shape)

View File

@ -300,7 +300,7 @@ class Trainer:
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_vqvae_audio_lj.yml')
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_vqvae_xform_audio_lj.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()

View File

@ -426,6 +426,7 @@ class DecomposeDimensionInjector(Injector):
def __init__(self, opt, env):
super().__init__(opt, env)
self.dim = opt['dim']
self.cutoff_dim = opt_get(opt, ['cutoff_dim'], -1)
assert self.dim != 0 # Cannot decompose the batch dimension
def forward(self, state):
@ -440,7 +441,11 @@ class DecomposeDimensionInjector(Injector):
rev_permute = list(range(len(inp.shape)))[1:] # Looks like [1,2,3]
rev_permute = rev_permute[:self.dim] + [0] + (rev_permute[self.dim:] if self.dim < len(rev_permute) else [])
return {self.output: inp.permute([self.dim] + dims).reshape((-1,) + tuple(shape[1:])),
out = inp.permute([self.dim] + dims).reshape((-1,) + tuple(shape[1:]))
if self.cutoff_dim > -1:
out = out[:self.cutoff_dim]
return {self.output: out,
f'{self.output}_reverse_shape': rev_shape,
f'{self.output}_reverse_permute': rev_permute}