tfd5 - with clvp!
This commit is contained in:
parent
3db862dd32
commit
9852599b34
|
@ -54,7 +54,6 @@ class TransformerDiffusion(nn.Module):
|
|||
"""
|
||||
A diffusion model composed entirely of stacks of transformer layers. Why would you do it any other way?
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_channels=512,
|
||||
|
|
256
codes/models/audio/music/transformer_diffusion5.py
Normal file
256
codes/models/audio/music/transformer_diffusion5.py
Normal file
|
@ -0,0 +1,256 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import TimestepEmbedSequential, TimestepBlock
|
||||
from models.lucidrains.x_transformers import Encoder, Attention, FeedForward, RMSScaleShiftNorm, RotaryEmbedding
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint
|
||||
|
||||
|
||||
def is_latent(t):
|
||||
return t.dtype == torch.float
|
||||
|
||||
def is_sequence(t):
|
||||
return t.dtype == torch.long
|
||||
|
||||
|
||||
class MultiGroupEmbedding(nn.Module):
|
||||
def __init__(self, tokens, groups, dim):
|
||||
super().__init__()
|
||||
self.m = nn.ModuleList([nn.Embedding(tokens, dim // groups) for _ in range(groups)])
|
||||
|
||||
def forward(self, x):
|
||||
h = [embedding(x[:, :, i]) for i, embedding in enumerate(self.m)]
|
||||
return torch.cat(h, dim=-1)
|
||||
|
||||
|
||||
class TimestepRotaryEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
def forward(self, x, emb, rotary_emb):
|
||||
for layer in self:
|
||||
if isinstance(layer, TimestepBlock):
|
||||
x = layer(x, emb, rotary_emb)
|
||||
else:
|
||||
x = layer(x, rotary_emb)
|
||||
return x
|
||||
|
||||
|
||||
class AttentionBlock(TimestepBlock):
|
||||
def __init__(self, dim, heads, dropout):
|
||||
super().__init__()
|
||||
self.attn = Attention(dim, heads=heads, causal=False, dropout=dropout, zero_init_output=False)
|
||||
self.ff = FeedForward(dim, mult=1, dropout=dropout, zero_init_output=True)
|
||||
self.rms_scale_norm = RMSScaleShiftNorm(dim)
|
||||
|
||||
def forward(self, x, timestep_emb, rotary_emb):
|
||||
h = self.rms_scale_norm(x, norm_scale_shift_inp=timestep_emb)
|
||||
h, _, _, _ = checkpoint(self.attn, h, None, None, None, None, None, rotary_emb)
|
||||
h = checkpoint(self.ff, h)
|
||||
return h + x
|
||||
|
||||
|
||||
class TransformerDiffusion(nn.Module):
|
||||
"""
|
||||
A diffusion model composed entirely of stacks of transformer layers. Why would you do it any other way?
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
model_channels=512,
|
||||
num_layers=8,
|
||||
in_channels=256,
|
||||
in_latent_channels=512,
|
||||
clvp_in_dim=768,
|
||||
rotary_emb_dim=32,
|
||||
token_count=8,
|
||||
in_groups=None,
|
||||
out_channels=512, # mean and variance
|
||||
dropout=0,
|
||||
use_fp16=False,
|
||||
# Parameters for regularization.
|
||||
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
self.dropout = dropout
|
||||
self.unconditioned_percentage = unconditioned_percentage
|
||||
self.enable_fp16 = use_fp16
|
||||
heads = model_channels//64
|
||||
|
||||
self.inp_block = conv_nd(1, in_channels, model_channels, 3, 1, 1)
|
||||
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, model_channels),
|
||||
nn.SiLU(),
|
||||
linear(model_channels, model_channels),
|
||||
)
|
||||
self.conditioning_embedder = nn.Sequential(nn.Conv1d(in_channels, model_channels // 2, 3, padding=1, stride=2),
|
||||
nn.Conv1d(model_channels//2, model_channels,3,padding=1,stride=2))
|
||||
self.conditioning_encoder = Encoder(
|
||||
dim=model_channels,
|
||||
depth=4,
|
||||
heads=heads,
|
||||
ff_dropout=dropout,
|
||||
attn_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
rotary_pos_emb=True,
|
||||
)
|
||||
self.clvp_encoder = nn.Linear(clvp_in_dim, model_channels)
|
||||
|
||||
# Either code_converter or latent_converter is used, depending on what type of conditioning data is fed.
|
||||
# This model is meant to be able to be trained on both for efficiency purposes - it is far less computationally
|
||||
# complex to generate tokens, while generating latents will normally mean propagating through a deep autoregressive
|
||||
# transformer network.
|
||||
if in_groups is None:
|
||||
self.embeddings = nn.Embedding(token_count, model_channels)
|
||||
else:
|
||||
self.embeddings = MultiGroupEmbedding(token_count, in_groups, model_channels)
|
||||
self.latent_conditioner = nn.Sequential(
|
||||
nn.Conv1d(in_latent_channels, model_channels, 3, padding=1),
|
||||
Encoder(
|
||||
dim=model_channels,
|
||||
depth=2,
|
||||
heads=heads,
|
||||
ff_dropout=dropout,
|
||||
attn_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
rotary_pos_emb=True,
|
||||
)
|
||||
)
|
||||
self.latent_fade = nn.Parameter(torch.zeros(1,1,model_channels))
|
||||
self.code_converter = Encoder(
|
||||
dim=model_channels,
|
||||
depth=3,
|
||||
heads=heads,
|
||||
ff_dropout=dropout,
|
||||
attn_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
rotary_pos_emb=True,
|
||||
)
|
||||
|
||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1,1,model_channels))
|
||||
self.mel_head = nn.Conv1d(model_channels, in_channels, kernel_size=3, padding=1)
|
||||
|
||||
self.rotary_embeddings = RotaryEmbedding(rotary_emb_dim)
|
||||
self.intg = nn.Linear(model_channels*2, model_channels)
|
||||
self.layers = TimestepRotaryEmbedSequential(*[AttentionBlock(model_channels, model_channels//64, dropout) for _ in range(num_layers)])
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(model_channels),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
|
||||
)
|
||||
|
||||
self.debug_codes = {}
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
groups = {
|
||||
'contextual_embedder': list(self.conditioning_embedder.parameters()),
|
||||
'layers': list(self.layers.parameters()) + list(self.inp_block.parameters()),
|
||||
'code_converters': list(self.embeddings.parameters()) + list(self.code_converter.parameters()) + list(self.latent_conditioner.parameters()),
|
||||
'time_embed': list(self.time_embed.parameters()),
|
||||
}
|
||||
return groups
|
||||
|
||||
def timestep_independent(self, codes, conditioning_input, expected_seq_len, prenet_latent=None, return_code_pred=False):
|
||||
cond_emb = self.conditioning_embedder(conditioning_input).permute(0,2,1)
|
||||
cond_emb = self.conditioning_encoder(cond_emb)[:, 0]
|
||||
|
||||
code_emb = self.embeddings(codes)
|
||||
if prenet_latent is not None:
|
||||
latent_conditioning = self.latent_conditioner(prenet_latent)
|
||||
code_emb = code_emb + latent_conditioning * self.latent_fade
|
||||
|
||||
unconditioned_batches = torch.zeros((code_emb.shape[0], 1, 1), device=code_emb.device)
|
||||
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
||||
if self.training and self.unconditioned_percentage > 0:
|
||||
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
|
||||
device=code_emb.device) < self.unconditioned_percentage
|
||||
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(codes.shape[0], 1, 1),
|
||||
code_emb)
|
||||
code_emb = self.code_converter(code_emb)
|
||||
|
||||
expanded_code_emb = F.interpolate(code_emb.permute(0,2,1), size=expected_seq_len, mode='nearest').permute(0,2,1)
|
||||
if not return_code_pred:
|
||||
return expanded_code_emb, cond_emb
|
||||
else:
|
||||
# Perform the mel_head computation on the pre-exanded code embeddings, then interpolate it separately.
|
||||
mel_pred = self.mel_head(code_emb.permute(0,2,1))
|
||||
mel_pred = F.interpolate(mel_pred, size=expected_seq_len, mode='nearest')
|
||||
# Multiply mel_pred by !unconditioned_branches, which drops the gradient on unconditioned branches.
|
||||
# This is because we don't want that gradient being used to train parameters through the codes_embedder as
|
||||
# it unbalances contributions to that network from the MSE loss.
|
||||
mel_pred = mel_pred * unconditioned_batches.logical_not()
|
||||
return expanded_code_emb, cond_emb, mel_pred
|
||||
|
||||
|
||||
def forward(self, x, timesteps, codes=None, conditioning_input=None, clvp_input=None, prenet_latent=None, precomputed_code_embeddings=None,
|
||||
precomputed_cond_embeddings=None, conditioning_free=False, return_code_pred=False):
|
||||
if precomputed_code_embeddings is not None:
|
||||
assert precomputed_cond_embeddings is not None, "Must specify both precomputed embeddings if one is specified"
|
||||
assert codes is None and conditioning_input is None and prenet_latent is None, "Do not provide precomputed embeddings and the other parameters. It is unclear what you want me to do here."
|
||||
assert not (return_code_pred and precomputed_code_embeddings is not None), "I cannot compute a code_pred output for you."
|
||||
|
||||
unused_params = []
|
||||
if not return_code_pred:
|
||||
unused_params.extend(list(self.mel_head.parameters()))
|
||||
if conditioning_free:
|
||||
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1])
|
||||
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
||||
unused_params.extend(list(self.latent_conditioner.parameters()))
|
||||
else:
|
||||
if precomputed_code_embeddings is not None:
|
||||
code_emb = precomputed_code_embeddings
|
||||
cond_emb = precomputed_cond_embeddings
|
||||
else:
|
||||
code_emb, cond_emb, mel_pred = self.timestep_independent(codes, conditioning_input, x.shape[-1], prenet_latent, True)
|
||||
if prenet_latent is None:
|
||||
unused_params.extend(list(self.latent_conditioner.parameters()) + [self.latent_fade])
|
||||
unused_params.append(self.unconditioned_embedding)
|
||||
|
||||
clvp_emb = torch.zeros_like(cond_emb) if clvp_input is None else self.clvp_encoder(clvp_input)
|
||||
if clvp_input is None:
|
||||
unused_params.extend(self.clvp_encoder.parameters())
|
||||
blk_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) + cond_emb + clvp_emb
|
||||
x = self.inp_block(x).permute(0,2,1)
|
||||
|
||||
rotary_pos_emb = self.rotary_embeddings(x.shape[1], x.device)
|
||||
x = self.intg(torch.cat([x, code_emb], dim=-1))
|
||||
x = self.layers(x, blk_emb, rotary_pos_emb)
|
||||
|
||||
x = x.float().permute(0,2,1)
|
||||
out = self.out(x)
|
||||
|
||||
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
|
||||
extraneous_addition = 0
|
||||
for p in unused_params:
|
||||
extraneous_addition = extraneous_addition + p.mean()
|
||||
out = out + extraneous_addition * 0
|
||||
|
||||
if return_code_pred:
|
||||
return out, mel_pred
|
||||
return out
|
||||
|
||||
|
||||
@register_model
|
||||
def register_transformer_diffusion5(opt_net, opt):
|
||||
return TransformerDiffusion(**opt_net['kwargs'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
clip = torch.randn(2, 256, 400)
|
||||
aligned_latent = torch.randn(2,100,512)
|
||||
aligned_sequence = torch.randint(0,8,(2,100,8))
|
||||
cond = torch.randn(2, 256, 400)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
clvp = torch.randn(2,768)
|
||||
model = TransformerDiffusion(512, unconditioned_percentage=.5, in_groups=8)
|
||||
o = model(clip, ts, aligned_sequence, cond, clvp_input=clvp, return_code_pred=True)
|
||||
#o = model(clip, ts, aligned_sequence, cond, aligned_latent)
|
||||
|
|
@ -108,6 +108,14 @@ class VoiceCLIP(nn.Module):
|
|||
self.text_pos_emb = nn.Embedding(text_seq_len, dim_text)
|
||||
self.speech_pos_emb = nn.Embedding(num_speech_tokens, dim_speech)
|
||||
|
||||
def embed_text(self, text):
|
||||
text_mask = torch.ones_like(text.float()).bool()
|
||||
text_emb = self.text_emb(text)
|
||||
enc_text = self.text_transformer(text_emb, mask=text_mask)
|
||||
text_latents = masked_mean(enc_text, text_mask, dim=1)
|
||||
text_latents = self.to_text_latent(text_latents)
|
||||
return text_latents
|
||||
|
||||
def forward(
|
||||
self,
|
||||
text,
|
||||
|
|
|
@ -331,9 +331,10 @@ class Mel2vecCodesInjector(Injector):
|
|||
from models.audio.mel2vec import ContrastiveTrainingWrapper
|
||||
self.m2v = ContrastiveTrainingWrapper(mel_input_channels=256, inner_dim=1024, layers=24, dropout=0,
|
||||
mask_time_prob=0,
|
||||
mask_time_length=6, num_negatives=100, codebook_size=8, codebook_groups=8,
|
||||
disable_custom_linear_init=True)
|
||||
mask_time_length=6, num_negatives=100, codebook_size=16, codebook_groups=4,
|
||||
disable_custom_linear_init=True, do_reconstruction_loss=True)
|
||||
self.m2v.load_state_dict(torch.load(f"../experiments/m2v_{for_what}.pth", map_location=torch.device('cpu')))
|
||||
self.m2v = self.m2v.eval()
|
||||
del self.m2v.m2v.encoder # This is a big memory sink which will not get used.
|
||||
self.needs_move = True
|
||||
|
||||
|
@ -344,3 +345,25 @@ class Mel2vecCodesInjector(Injector):
|
|||
self.m2v = self.m2v.to(mels.device)
|
||||
codes = self.m2v.get_codes(mels)
|
||||
return {self.output: codes}
|
||||
|
||||
|
||||
class ClvpTextInjector(Injector):
|
||||
def __init__(self, opt, env):
|
||||
super().__init__(opt, env)
|
||||
from models.clip.text_voice_clip import VoiceCLIP
|
||||
self.clvp = VoiceCLIP(dim_text=768, dim_speech=768, dim_latent=768, num_text_tokens=256, text_enc_depth=20,
|
||||
text_seq_len=350, text_heads=12, num_speech_tokens=8192, speech_enc_depth=20,
|
||||
speech_heads=12, speech_seq_len=430, text_mask_percentage=0, voice_mask_percentage=0,
|
||||
use_xformers=True)
|
||||
self.clvp.load_state_dict(torch.load(f"../experiments/clvp_md.pth", map_location=torch.device('cpu')))
|
||||
self.clvp = self.clvp.eval()
|
||||
del self.clvp.speech_transformer # We will only be using the text transformer.
|
||||
self.needs_move = True
|
||||
|
||||
def forward(self, state):
|
||||
codes = state[self.input]
|
||||
with torch.no_grad():
|
||||
if self.needs_move:
|
||||
self.clvp = self.clvp.to(codes.device)
|
||||
latents = self.clvp.embed_text(codes)
|
||||
return {self.output: latents}
|
Loading…
Reference in New Issue
Block a user