Add a new script for loading a discriminator network and using it to filter images

This commit is contained in:
James Betker 2020-09-17 13:30:32 -06:00
parent f5cd23e2d5
commit 9963b37200
2 changed files with 101 additions and 0 deletions

View File

@ -0,0 +1,75 @@
import os.path as osp
import logging
import time
import argparse
from collections import OrderedDict
import os
import options.options as option
import utils.util as util
from data.util import bgr2ycbcr
import models.archs.SwitchedResidualGenerator_arch as srg
from switched_conv_util import save_attention_to_image, save_attention_to_image_rgb
from switched_conv import compute_attention_specificity
from data import create_dataset, create_dataloader
from models import create_model
from tqdm import tqdm
import torch
import models.networks as networks
import shutil
import torchvision
if __name__ == "__main__":
bin_path = "f:\\binned"
good_path = "f:\\good"
os.makedirs(bin_path, exist_ok=True)
os.makedirs(good_path, exist_ok=True)
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../../options/discriminator_filter.yml')
opt = option.parse(parser.parse_args().opt, is_train=False)
opt = option.dict_to_nonedict(opt)
opt['dist'] = False
util.mkdirs(
(path for key, path in opt['path'].items()
if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key))
util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
#### Create test dataset and dataloader
test_loaders = []
for phase, dataset_opt in sorted(opt['datasets'].items()):
test_set = create_dataset(dataset_opt)
test_loader = create_dataloader(test_set, dataset_opt, opt=opt)
logger.info('Number of test images in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set)))
test_loaders.append(test_loader)
model = create_model(opt)
fea_loss = 0
for test_loader in test_loaders:
test_set_name = test_loader.dataset.opt['name']
logger.info('\nTesting [{:s}]...'.format(test_set_name))
test_start_time = time.time()
dataset_dir = osp.join(opt['path']['results_root'], test_set_name)
util.mkdir(dataset_dir)
tq = tqdm(test_loader)
for data in tq:
model.feed_data(data, need_GT=True)
model.test()
results = model.eval_state['discriminator_out'][0]
for i in range(results.shape[0]):
imname = osp.basename(data['GT_path'][i])
if results[i] < 1:
torchvision.utils.save_image(data['GT'][i], osp.join(bin_path, imname))
else:
torchvision.utils.save_image(data['GT'][i], osp.join(good_path, imname))
# log
logger.info('# Validation # Fea: {:.4e}'.format(fea_loss / len(test_loader)))

View File

@ -7,6 +7,8 @@ def create_injector(opt_inject, env):
type = opt_inject['type']
if type == 'generator':
return ImageGeneratorInjector(opt_inject, env)
elif type == 'discriminator':
return DiscriminatorInjector(opt_inject, env)
elif type == 'scheduled_scalar':
return ScheduledScalarInjector(opt_inject, env)
elif type == 'img_grad':
@ -60,6 +62,30 @@ class ImageGeneratorInjector(Injector):
return new_state
# Injects a result from a discriminator network into the state.
class DiscriminatorInjector(Injector):
def __init__(self, opt, env):
super(DiscriminatorInjector, self).__init__(opt, env)
def forward(self, state):
d = self.env['discriminators'][self.opt['discriminator']]
if isinstance(self.input, list):
params = [state[i] for i in self.input]
results = d(*params)
else:
results = d(state[self.input])
new_state = {}
if isinstance(self.output, list):
# Only dereference tuples or lists, not tensors.
assert isinstance(results, list) or isinstance(results, tuple)
for i, k in enumerate(self.output):
new_state[k] = results[i]
else:
new_state[self.output] = results
return new_state
# Creates an image gradient from [in] and injects it into [out]
class ImageGradientInjector(Injector):
def __init__(self, opt, env):