update audio_with_noise
This commit is contained in:
parent
e754c4fbbc
commit
9bbbe26012
|
@ -82,6 +82,8 @@ class AudioWithNoiseDataset(Dataset):
|
|||
self.sampling_rate = self.underlying_dataset.sampling_rate
|
||||
self.use_gpu_for_reverb_compute = opt_get(opt, ['use_gpu_for_reverb_compute'], True)
|
||||
self.openair_kernels = None
|
||||
self.current_item_fetch = 0
|
||||
self.fetch_error_count = 0
|
||||
|
||||
def load_openair_kernels(self):
|
||||
if self.use_gpu_for_reverb_compute and self.openair_kernels is None:
|
||||
|
@ -91,6 +93,10 @@ class AudioWithNoiseDataset(Dataset):
|
|||
self.openair_kernels.append(load_rir(oa, self.underlying_dataset.sampling_rate, self.underlying_dataset.sampling_rate*2).cuda())
|
||||
|
||||
def __getitem__(self, item):
|
||||
if self.current_item_fetch != item:
|
||||
self.current_item_fetch = item
|
||||
self.fetch_error_count = 0
|
||||
|
||||
# Load on the fly to prevent GPU memory sharing across process errors.
|
||||
self.load_openair_kernels()
|
||||
|
||||
|
@ -107,7 +113,7 @@ class AudioWithNoiseDataset(Dataset):
|
|||
clip = clip * clipvol
|
||||
|
||||
label = random.randint(0, 4) # Current excludes GSM corruption.
|
||||
label = 3
|
||||
#label = 3
|
||||
if label > 0 and label < 4: # 0 is basically "leave it alone"
|
||||
aug_needed = True
|
||||
augvol = (random.random() * (self.max_volume-self.min_volume) + self.min_volume)
|
||||
|
@ -137,7 +143,7 @@ class AudioWithNoiseDataset(Dataset):
|
|||
clip = torch.cat([clip, aug], dim=1)
|
||||
# Restore some meta-parameters.
|
||||
padding_room = dlen - clip.shape[-1]
|
||||
out['clip_lengths'] = clip.shape[-1]
|
||||
out['clip_lengths'] = torch.tensor(clip.shape[-1])
|
||||
aug_needed = False
|
||||
if aug_needed:
|
||||
aug = load_audio(augpath, self.underlying_dataset.sampling_rate)
|
||||
|
@ -169,9 +175,11 @@ class AudioWithNoiseDataset(Dataset):
|
|||
# Apply the GSM codec to simulate cellular phone audio.
|
||||
clip = torchaudio.functional.apply_codec(clip, self.underlying_dataset.sampling_rate, format="gsm")
|
||||
except:
|
||||
#print(f"Exception encountered processing {item}, re-trying because this is often just a failed aug.")
|
||||
#print(sys.exc_info())
|
||||
#raise # Uncomment to surface exceptions.
|
||||
if self.fetch_error_count > 10:
|
||||
print(f"Exception encountered processing {item}, re-trying because this is often just a failed aug.")
|
||||
print(sys.exc_info())
|
||||
#raise # Uncomment to surface exceptions.
|
||||
self.fetch_error_count += 1
|
||||
return self[item]
|
||||
|
||||
clip.clip_(-1, 1)
|
||||
|
@ -193,27 +201,29 @@ if __name__ == '__main__':
|
|||
params = {
|
||||
'mode': 'unsupervised_audio_with_noise',
|
||||
'path': ['y:/clips/books1'],
|
||||
'cache_path': 'E:\\audio\\remote-cache4.pth',
|
||||
'cache_path': 'D:\\data\\clips_for_noise_classifier.pth',
|
||||
'sampling_rate': 22050,
|
||||
'pad_to_samples': 400000,
|
||||
'do_augmentation': False,
|
||||
'phase': 'train',
|
||||
'n_workers': 0,
|
||||
'batch_size': 4,
|
||||
'extra_samples': 4,
|
||||
'n_workers': 4,
|
||||
'batch_size': 256,
|
||||
'extra_samples': 0,
|
||||
'env_noise_paths': ['E:\\audio\\UrbanSound\\filtered', 'E:\\audio\\UrbanSound\\MSSND'],
|
||||
'env_noise_cache': 'E:\\audio\\UrbanSound\\cache.pth',
|
||||
'music_paths': ['E:\\audio\\music\\FMA\\fma_large', 'E:\\audio\\music\\maestro\\maestro-v3.0.0'],
|
||||
'music_cache': 'E:\\audio\\music\\cache.pth',
|
||||
'openair_path': 'D:\\data\\audio\\openair\\resampled'
|
||||
'openair_path': 'D:\\data\\audio\\openair\\resampled',
|
||||
'use_gpu_for_reverb_compute': False,
|
||||
}
|
||||
from data import create_dataset, create_dataloader, util
|
||||
|
||||
ds = create_dataset(params)
|
||||
dl = create_dataloader(ds, params)
|
||||
dl = create_dataloader(ds, params, pin_memory=False)
|
||||
i = 0
|
||||
for b in tqdm(dl):
|
||||
for b_ in range(b['clip'].shape[0]):
|
||||
torchaudio.save(f'{i}_clip_{b_}_{b["label"][b_].item()}.wav', b['clip'][b_][:, :b['clip_lengths'][b_]], ds.sampling_rate)
|
||||
#torchaudio.save(f'{i}_clip_{b_}_{b["label"][b_].item()}.wav', b['clip'][b_][:, :b['clip_lengths'][b_]], ds.sampling_rate)
|
||||
#torchaudio.save(f'{i}_clip_{b_}_aug.wav', b['aug'][b_], ds.sampling_rate)
|
||||
print(f'{i} aug path: {b["augpath"][b_]} aug volume: {b["augvol"][b_]} clip volume: {b["clipvol"][b_]}')
|
||||
i += 1
|
||||
|
|
Loading…
Reference in New Issue
Block a user