Simplify cifar resnet further for faster training
This commit is contained in:
parent
75567a9814
commit
a0158ebc69
|
@ -85,11 +85,11 @@ class ResNetTail(nn.Module):
|
|||
def __init__(self, block, num_block, num_classes=100):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = 128
|
||||
self.conv4_x = self._make_layer(block, 256, num_block[2], 2)
|
||||
self.conv5_x = self._make_layer(block, 512, num_block[3], 2)
|
||||
self.in_channels = 64
|
||||
self.conv4_x = self._make_layer(block, 128, num_block[2], 2)
|
||||
self.conv5_x = self._make_layer(block, 256, num_block[3], 2)
|
||||
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
|
||||
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
||||
self.fc = nn.Linear(256 * block.expansion, num_classes)
|
||||
|
||||
def _make_layer(self, block, out_channels, num_blocks, stride):
|
||||
strides = [stride] + [1] * (num_blocks - 1)
|
||||
|
@ -111,19 +111,19 @@ class ResNetTail(nn.Module):
|
|||
|
||||
class ResNet(nn.Module):
|
||||
|
||||
def __init__(self, block, num_block, num_classes=100, num_tails=20):
|
||||
def __init__(self, block, num_block, num_classes=100, num_tails=8):
|
||||
super().__init__()
|
||||
self.in_channels = 64
|
||||
self.in_channels = 32
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(64),
|
||||
nn.Conv2d(3, 32, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.ReLU(inplace=True))
|
||||
|
||||
self.conv2_x = self._make_layer(block, 64, num_block[0], 1)
|
||||
self.conv3_x = self._make_layer(block, 128, num_block[1], 2)
|
||||
self.conv2_x = self._make_layer(block, 32, num_block[0], 1)
|
||||
self.conv3_x = self._make_layer(block, 64, num_block[1], 2)
|
||||
self.tails = nn.ModuleList([ResNetTail(block, num_block, 256) for _ in range(num_tails)])
|
||||
self.selector = ResNetTail(block, num_block, num_tails)
|
||||
self.final_linear = nn.Linear(256, 100)
|
||||
self.final_linear = nn.Linear(256, num_classes)
|
||||
|
||||
def _make_layer(self, block, out_channels, num_blocks, stride):
|
||||
strides = [stride] + [1] * (num_blocks - 1)
|
||||
|
@ -181,5 +181,5 @@ def resnet152():
|
|||
|
||||
if __name__ == '__main__':
|
||||
model = ResNet(BasicBlock, [2,2,2,2])
|
||||
print(model(torch.randn(2,3,32,32), torch.LongTensor([4,19])).shape)
|
||||
print(model(torch.randn(2,3,32,32), torch.LongTensor([4,7])).shape)
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user