multires rrdb work

This commit is contained in:
James Betker 2020-11-28 14:35:46 -07:00
parent 929cd45c05
commit a1d4c9f83c
4 changed files with 103 additions and 6 deletions

View File

@ -72,7 +72,7 @@ class RRDB(nn.Module):
else:
self.reducer = None
def forward(self, x):
def forward(self, x, return_residual=False):
"""Forward function.
Args:
@ -88,8 +88,12 @@ class RRDB(nn.Module):
out = self.reducer(out)
b, f, h, w = out.shape
out = torch.cat([out, torch.zeros((b, self.recover_ch, h, w), device=out.device)], dim=1)
# Emperically, we use 0.2 to scale the residual for better performance
return out * 0.2 + x
if return_residual:
return 0.2 * out
else:
# Empirically, we use 0.2 to scale the residual for better performance
return out * 0.2 + x
class RRDBWithBypass(nn.Module):
@ -173,6 +177,7 @@ class RRDBNet(nn.Module):
headless=False,
feature_channels=64, # Only applicable when headless=True. How many channels are used at the trunk level.
output_mode="hq_only", # Options: "hq_only", "hq+features", "features_only"
initial_stride=1,
):
super(RRDBNet, self).__init__()
assert output_mode in ['hq_only', 'hq+features', 'features_only']
@ -182,7 +187,7 @@ class RRDBNet(nn.Module):
self.scale = scale
self.in_channels = in_channels
self.output_mode = output_mode
first_conv_stride = 1 if in_channels <= 4 else scale
first_conv_stride = initial_stride if in_channels <= 4 else scale
first_conv_ksize = 3 if first_conv_stride == 1 else 7
first_conv_padding = 1 if first_conv_stride == 1 else 3
if headless:

View File

@ -0,0 +1,83 @@
import torch.nn as nn
import torch.nn.functional as F
from models.archs.RRDBNet_arch import RRDB
from models.archs.arch_util import make_layer, default_init_weights, ConvGnSilu, ConvGnLelu
from utils.util import checkpoint
class MultiLevelRRDB(nn.Module):
def __init__(self, nf, gc, levels):
super().__init__()
self.levels = levels
self.level_rrdbs = nn.ModuleList([RRDB(nf, growth_channels=gc) for i in range(levels)])
# Trunks should be fed in in order HR->LR
def forward(self, trunk):
for i in reversed(range(self.levels)):
lvl_scale = (2**i)
lvl_res = self.level_rrdbs[i](F.interpolate(trunk, scale_factor=1/lvl_scale, mode="area"), return_residual=True)
trunk = trunk + F.interpolate(lvl_res, scale_factor=lvl_scale, mode="nearest")
return trunk
class MultiResRRDBNet(nn.Module):
def __init__(self,
in_channels,
out_channels,
mid_channels=64,
l1_blocks=3,
l2_blocks=4,
l3_blocks=6,
growth_channels=32,
scale=4,
):
super().__init__()
self.scale = scale
self.in_channels = in_channels
self.conv_first = nn.Conv2d(in_channels, mid_channels, 7, stride=1, padding=3)
self.l3_blocks = nn.ModuleList([MultiLevelRRDB(mid_channels, growth_channels, 3) for _ in range(l1_blocks)])
self.l2_blocks = nn.ModuleList([MultiLevelRRDB(mid_channels, growth_channels, 2) for _ in range(l2_blocks)])
self.l1_blocks = nn.ModuleList([MultiLevelRRDB(mid_channels, growth_channels, 1) for _ in range(l3_blocks)])
self.block_levels = [self.l3_blocks, self.l2_blocks, self.l1_blocks]
self.conv_body = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)
# upsample
self.conv_up1 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)
self.conv_up2 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)
self.conv_hr = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)
self.conv_last = nn.Conv2d(mid_channels, out_channels, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
for m in [
self.conv_first, self.conv_first, self.conv_body, self.conv_up1,
self.conv_up2, self.conv_hr, self.conv_last
]:
if m is not None:
default_init_weights(m, 0.1)
def forward(self, x):
trunk = self.conv_first(x)
for block_set in self.block_levels:
for block in block_set:
trunk = checkpoint(block, trunk)
body_feat = self.conv_body(trunk)
feat = trunk + body_feat
# upsample
out = self.lrelu(
self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
if self.scale == 4:
out = self.lrelu(
self.conv_up2(F.interpolate(out, scale_factor=2, mode='nearest')))
else:
out = self.lrelu(self.conv_up2(out))
out = self.conv_last(self.lrelu(self.conv_hr(out)))
return out
def visual_dbg(self, step, path):
pass

View File

@ -47,9 +47,18 @@ def define_G(opt, opt_net, scale=None):
block = RRDBNet_arch.RRDB
additive_mode = opt_net['additive_mode'] if 'additive_mode' in opt_net.keys() else 'not'
output_mode = opt_net['output_mode'] if 'output_mode' in opt_net.keys() else 'hq_only'
gc = opt_net['gc'] if 'gc' in opt_net.keys() else 32
initial_stride = opt_net['initial_stride'] if 'initial_stride' in opt_net.keys() else 1
netG = RRDBNet_arch.RRDBNet(in_channels=opt_net['in_nc'], out_channels=opt_net['out_nc'],
mid_channels=opt_net['nf'], num_blocks=opt_net['nb'], additive_mode=additive_mode,
output_mode=output_mode, body_block=block, scale=opt_net['scale'])
output_mode=output_mode, body_block=block, scale=opt_net['scale'], growth_channels=gc,
initial_stride=initial_stride)
elif which_model == "multires_rrdb":
from models.archs.multi_res_rrdb import MultiResRRDBNet
netG = MultiResRRDBNet(in_channels=opt_net['in_nc'], out_channels=opt_net['out_nc'],
mid_channels=opt_net['nf'], l1_blocks=opt_net['l1'],
l2_blocks=opt_net['l2'], l3_blocks=opt_net['l3'],
growth_channels=opt_net['gc'], scale=opt_net['scale'])
elif which_model == 'rcan':
#args: n_resgroups, n_resblocks, res_scale, reduction, scale, n_feats
opt_net['rgb_range'] = 255

View File

@ -291,7 +291,7 @@ class Trainer:
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_mi1_rrdb4x_6bl_rrdbdisc.yml')
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgsetext_rrdb4x_6bl_multires.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()