Fix pixdisc bug
This commit is contained in:
parent
d0957bd7d4
commit
a47a5dca43
|
@ -1,6 +1,7 @@
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torchvision
|
import torchvision
|
||||||
|
from models.archs.arch_util import ConvBnLelu
|
||||||
|
|
||||||
|
|
||||||
class Discriminator_VGG_128(nn.Module):
|
class Discriminator_VGG_128(nn.Module):
|
||||||
|
@ -76,3 +77,62 @@ class Discriminator_VGG_128(nn.Module):
|
||||||
out = self.linear2(fea)
|
out = self.linear2(fea)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class Discriminator_VGG_PixLoss(nn.Module):
|
||||||
|
def __init__(self, in_nc, nf):
|
||||||
|
super(Discriminator_VGG_PixLoss, self).__init__()
|
||||||
|
# [64, 128, 128]
|
||||||
|
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
||||||
|
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
|
||||||
|
self.bn0_1 = nn.BatchNorm2d(nf, affine=True)
|
||||||
|
# [64, 64, 64]
|
||||||
|
self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
|
||||||
|
self.bn1_0 = nn.BatchNorm2d(nf * 2, affine=True)
|
||||||
|
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
|
||||||
|
self.bn1_1 = nn.BatchNorm2d(nf * 2, affine=True)
|
||||||
|
# [128, 32, 32]
|
||||||
|
self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
|
||||||
|
self.bn2_0 = nn.BatchNorm2d(nf * 4, affine=True)
|
||||||
|
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
|
||||||
|
self.bn2_1 = nn.BatchNorm2d(nf * 4, affine=True)
|
||||||
|
# [256, 16, 16]
|
||||||
|
self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
|
||||||
|
self.bn3_0 = nn.BatchNorm2d(nf * 8, affine=True)
|
||||||
|
self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
||||||
|
self.bn3_1 = nn.BatchNorm2d(nf * 8, affine=True)
|
||||||
|
# [512, 8, 8]
|
||||||
|
self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
|
||||||
|
self.bn4_0 = nn.BatchNorm2d(nf * 8, affine=True)
|
||||||
|
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
||||||
|
self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True)
|
||||||
|
|
||||||
|
self.reduce_1 = ConvBnLelu(nf * 8, nf * 4, bias=False)
|
||||||
|
self.pix_loss_collapse = ConvBnLelu(nf * 4, 1, bias=False)
|
||||||
|
|
||||||
|
# activation function
|
||||||
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = x[0]
|
||||||
|
fea = self.lrelu(self.conv0_0(x))
|
||||||
|
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
|
||||||
|
|
||||||
|
fea = self.lrelu(self.bn1_0(self.conv1_0(fea)))
|
||||||
|
fea = self.lrelu(self.bn1_1(self.conv1_1(fea)))
|
||||||
|
|
||||||
|
fea = self.lrelu(self.bn2_0(self.conv2_0(fea)))
|
||||||
|
fea = self.lrelu(self.bn2_1(self.conv2_1(fea)))
|
||||||
|
|
||||||
|
fea = self.lrelu(self.bn3_0(self.conv3_0(fea)))
|
||||||
|
fea = self.lrelu(self.bn3_1(self.conv3_1(fea)))
|
||||||
|
|
||||||
|
fea = self.lrelu(self.bn4_0(self.conv4_0(fea)))
|
||||||
|
fea = self.lrelu(self.bn4_1(self.conv4_1(fea)))
|
||||||
|
|
||||||
|
loss = self.reduce_1(fea)
|
||||||
|
loss = self.pix_loss_collapse(loss)
|
||||||
|
|
||||||
|
# Compress all of the loss values into the batch dimension. The actual loss attached to this output will
|
||||||
|
# then know how to handle them.
|
||||||
|
return loss.view(-1, 1)
|
||||||
|
|
||||||
|
|
|
@ -114,6 +114,8 @@ def define_D(opt):
|
||||||
netD = DiscriminatorResnet_arch_passthrough.fixup_resnet34(num_filters=opt_net['nf'], num_classes=1, input_img_size=img_sz,
|
netD = DiscriminatorResnet_arch_passthrough.fixup_resnet34(num_filters=opt_net['nf'], num_classes=1, input_img_size=img_sz,
|
||||||
number_skips=opt_net['number_skips'], use_bn=True,
|
number_skips=opt_net['number_skips'], use_bn=True,
|
||||||
disable_passthrough=opt_net['disable_passthrough'])
|
disable_passthrough=opt_net['disable_passthrough'])
|
||||||
|
elif which_model == 'discriminator_pix':
|
||||||
|
netD = SRGAN_arch.Discriminator_VGG_PixLoss(in_nc=opt_net['in_nc'], nf=opt_net['nf'])
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError('Discriminator model [{:s}] not recognized'.format(which_model))
|
raise NotImplementedError('Discriminator model [{:s}] not recognized'.format(which_model))
|
||||||
return netD
|
return netD
|
||||||
|
|
|
@ -33,7 +33,7 @@ def init_dist(backend='nccl', **kwargs):
|
||||||
def main():
|
def main():
|
||||||
#### options
|
#### options
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../experiments/train_div2k_srg2/train_div2k_srg2_basis.yml')
|
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_div2k_rrdb.yml')
|
||||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
|
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
|
||||||
help='job launcher')
|
help='job launcher')
|
||||||
parser.add_argument('--local_rank', type=int, default=0)
|
parser.add_argument('--local_rank', type=int, default=0)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user