Remover fixup code from arch_util

Going into it's own arch.
This commit is contained in:
James Betker 2020-04-29 15:17:43 -06:00
parent 5b8a77f02c
commit a5188bb7ca
3 changed files with 180 additions and 160 deletions

View File

@ -2,8 +2,10 @@
<module type="PYTHON_MODULE" version="4"> <module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager"> <component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$"> <content url="file://$MODULE_DIR$">
<sourceFolder url="file://$MODULE_DIR$/codes" isTestSource="false" />
<excludeFolder url="file://$MODULE_DIR$/datasets" /> <excludeFolder url="file://$MODULE_DIR$/datasets" />
<excludeFolder url="file://$MODULE_DIR$/experiments" /> <excludeFolder url="file://$MODULE_DIR$/experiments" />
<excludeFolder url="file://$MODULE_DIR$/results" />
<excludeFolder url="file://$MODULE_DIR$/tb_logger" /> <excludeFolder url="file://$MODULE_DIR$/tb_logger" />
</content> </content>
<orderEntry type="jdk" jdkName="Python 3.7 (python37-torch)" jdkType="Python SDK" /> <orderEntry type="jdk" jdkName="Python 3.7 (python37-torch)" jdkType="Python SDK" />

View File

@ -1,85 +1,195 @@
import torch import torch
import torch.nn as nn import torch.nn as nn
import torchvision import numpy as np
import models.archs.arch_util as arch_util
import functools
import torch.nn.functional as F
import torch.nn.utils.spectral_norm as SpectralNorm
# Class that halfs the image size (x4 complexity reduction) and doubles the filter size. Substantial resnet
# processing is also performed.
class ResnetDownsampleLayer(nn.Module):
def __init__(self, starting_channels: int, number_filters: int, filter_multiplier: int, residual_blocks_input: int, residual_blocks_skip_image: int, total_residual_blocks: int):
super(ResnetDownsampleLayer, self).__init__()
self.skip_image_reducer = SpectralNorm(nn.Conv2d(starting_channels, number_filters, 3, stride=1, padding=1, bias=True)) __all__ = ['FixupResNet', 'fixup_resnet18', 'fixup_resnet34', 'fixup_resnet50', 'fixup_resnet101', 'fixup_resnet152']
self.skip_image_res_trunk = arch_util.make_layer(functools.partial(arch_util.ResidualBlockSpectralNorm, nf=number_filters, total_residual_blocks=total_residual_blocks), residual_blocks_skip_image)
self.input_reducer = SpectralNorm(nn.Conv2d(number_filters, number_filters*filter_multiplier, 3, stride=2, padding=1, bias=True))
self.res_trunk = arch_util.make_layer(functools.partial(arch_util.ResidualBlockSpectralNorm, nf=number_filters*filter_multiplier, total_residual_blocks=total_residual_blocks), residual_blocks_input)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class FixupBasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(FixupBasicBlock, self).__init__()
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.bias1a = nn.Parameter(torch.zeros(1))
self.conv1 = conv3x3(inplanes, planes, stride)
self.bias1b = nn.Parameter(torch.zeros(1))
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
arch_util.initialize_weights([self.input_reducer, self.skip_image_reducer], 1) self.bias2a = nn.Parameter(torch.zeros(1))
self.conv2 = conv3x3(planes, planes)
self.scale = nn.Parameter(torch.ones(1))
self.bias2b = nn.Parameter(torch.zeros(1))
self.downsample = downsample
self.stride = stride
def forward(self, x, skip_image): def forward(self, x):
# Process the skip image first. identity = x
skip = self.lrelu(self.skip_image_reducer(skip_image))
skip = self.skip_image_res_trunk(skip) out = self.conv1(x + self.bias1a)
out = self.lrelu(out + self.bias1b)
out = self.conv2(out + self.bias2a)
out = out * self.scale + self.bias2b
if self.downsample is not None:
identity = self.downsample(x + self.bias1a)
out += identity
out = self.lrelu(out)
# Concat the processed skip image onto the input and perform processing.
out = (x + skip) / 2
out = self.lrelu(self.input_reducer(out))
out = self.res_trunk(out)
return out return out
class DiscriminatorResnet(nn.Module): class FixupBottleneck(nn.Module):
# Discriminator that downsamples 5 times with resnet blocks at each layer. On each downsample, the filter size is expansion = 4
# increased by a factor of 2. Feeds the output of the convs into a dense for prediction at the logits. Scales the
# final dense based on the input image size. Intended for use with input images which are multiples of 32.
#
# This discriminator also includes provisions to pass an image at various downsample steps in directly. When this
# is done with a generator, it will allow much shorter gradient paths between the generator and discriminator. When
# no downsampled images are passed into the forward() pass, they will be automatically generated from the source
# image using interpolation.
#
# Uses spectral normalization rather than batch normalization.
def __init__(self, in_nc: int, nf: int, input_img_size: int, trunk_resblocks: int, skip_resblocks: int):
super(DiscriminatorResnet, self).__init__()
self.dimensionalize = nn.Conv2d(in_nc, nf, kernel_size=3, stride=1, padding=1, bias=True)
# Trunk resblocks are the important things to get right, so use those. 5=number of downsample layers. def __init__(self, inplanes, planes, stride=1, downsample=None):
total_resblocks = trunk_resblocks * 5 super(FixupBottleneck, self).__init__()
self.downsample1 = ResnetDownsampleLayer(in_nc, nf, 2, trunk_resblocks, skip_resblocks, total_resblocks) # Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.downsample2 = ResnetDownsampleLayer(in_nc, nf*2, 2, trunk_resblocks, skip_resblocks, total_resblocks) self.bias1a = nn.Parameter(torch.zeros(1))
self.downsample3 = ResnetDownsampleLayer(in_nc, nf*4, 2, trunk_resblocks, skip_resblocks, total_resblocks) self.conv1 = conv1x1(inplanes, planes)
# At the bottom layers, we cap the filter multiplier. We want this particular network to focus as much on the self.bias1b = nn.Parameter(torch.zeros(1))
# macro-details at higher image dimensionality as it does to the feature details. self.bias2a = nn.Parameter(torch.zeros(1))
self.downsample4 = ResnetDownsampleLayer(in_nc, nf*8, 1, trunk_resblocks, skip_resblocks, total_resblocks) self.conv2 = conv3x3(planes, planes, stride)
self.downsample5 = ResnetDownsampleLayer(in_nc, nf*8, 1, trunk_resblocks, skip_resblocks, total_resblocks) self.bias2b = nn.Parameter(torch.zeros(1))
self.downsamplers = [self.downsample1, self.downsample2, self.downsample3, self.downsample4, self.downsample5] self.bias3a = nn.Parameter(torch.zeros(1))
self.conv3 = conv1x1(planes, planes * self.expansion)
self.scale = nn.Parameter(torch.ones(1))
self.bias3b = nn.Parameter(torch.zeros(1))
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.downsample = downsample
self.stride = stride
downsampled_image_size = input_img_size / 32 def forward(self, x):
self.linear1 = nn.Linear(int(nf * 8 * downsampled_image_size * downsampled_image_size), 100) identity = x
self.linear2 = nn.Linear(100, 1)
# activation function out = self.conv1(x + self.bias1a)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) out = self.lrelu(out + self.bias1b)
arch_util.initialize_weights([self.dimensionalize, self.linear1, self.linear2], 1) out = self.conv2(out + self.bias2a)
out = self.lrelu(out + self.bias2b)
def forward(self, x, skip_images=None): out = self.conv3(out + self.bias3a)
if skip_images is None: out = out * self.scale + self.bias3b
# Sythesize them from x.
skip_images = []
for i in range(len(self.downsamplers)):
m = 2 ** i
skip_images.append(F.interpolate(x, scale_factor=1 / m, mode='bilinear', align_corners=False))
fea = self.dimensionalize(x) if self.downsample is not None:
for skip, d in zip(skip_images, self.downsamplers): identity = self.downsample(x + self.bias1a)
fea = d(fea, skip)
out += identity
out = self.lrelu(out)
fea = fea.view(fea.size(0), -1)
fea = self.lrelu(self.linear1(fea))
out = self.linear2(fea)
return out return out
class FixupResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
super(FixupResNet, self).__init__()
self.num_layers = sum(layers)
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bias1 = nn.Parameter(torch.zeros(1))
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.bias2 = nn.Parameter(torch.zeros(1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, FixupBasicBlock):
nn.init.normal_(m.conv1.weight, mean=0, std=np.sqrt(2 / (m.conv1.weight.shape[0] * np.prod(m.conv1.weight.shape[2:]))) * self.num_layers ** (-0.5))
nn.init.constant_(m.conv2.weight, 0)
if m.downsample is not None:
nn.init.normal_(m.downsample.weight, mean=0, std=np.sqrt(2 / (m.downsample.weight.shape[0] * np.prod(m.downsample.weight.shape[2:]))))
elif isinstance(m, FixupBottleneck):
nn.init.normal_(m.conv1.weight, mean=0, std=np.sqrt(2 / (m.conv1.weight.shape[0] * np.prod(m.conv1.weight.shape[2:]))) * self.num_layers ** (-0.25))
nn.init.normal_(m.conv2.weight, mean=0, std=np.sqrt(2 / (m.conv2.weight.shape[0] * np.prod(m.conv2.weight.shape[2:]))) * self.num_layers ** (-0.25))
nn.init.constant_(m.conv3.weight, 0)
if m.downsample is not None:
nn.init.normal_(m.downsample.weight, mean=0, std=np.sqrt(2 / (m.downsample.weight.shape[0] * np.prod(m.downsample.weight.shape[2:]))))
elif isinstance(m, nn.Linear):
nn.init.constant_(m.weight, 0)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = conv1x1(self.inplanes, planes * block.expansion, stride)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x + self.bias1)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x + self.bias2)
return x
def fixup_resnet18(**kwargs):
"""Constructs a Fixup-ResNet-18 model.2
"""
model = FixupResNet(FixupBasicBlock, [2, 2, 2, 2], **kwargs)
return model
def fixup_resnet34(**kwargs):
"""Constructs a Fixup-ResNet-34 model.
"""
model = FixupResNet(FixupBasicBlock, [3, 4, 6, 3], **kwargs)
return model
def fixup_resnet50(**kwargs):
"""Constructs a Fixup-ResNet-50 model.
"""
model = FixupResNet(FixupBottleneck, [3, 4, 6, 3], **kwargs)
return model
def fixup_resnet101(**kwargs):
"""Constructs a Fixup-ResNet-101 model.
"""
model = FixupResNet(FixupBottleneck, [3, 4, 23, 3], **kwargs)
return model
def fixup_resnet152(**kwargs):
"""Constructs a Fixup-ResNet-152 model.
"""
model = FixupResNet(FixupBottleneck, [3, 8, 36, 3], **kwargs)
return model
__all__ = ['FixupResNet', 'fixup_resnet18', 'fixup_resnet34', 'fixup_resnet50', 'fixup_resnet101', 'fixup_resnet152']

View File

@ -5,13 +5,8 @@ import torch.nn.functional as F
import torch.nn.utils.spectral_norm as SpectralNorm import torch.nn.utils.spectral_norm as SpectralNorm
from math import sqrt from math import sqrt
def scale_conv_weights_fixup(conv, residual_block_count, m=2): def pixel_norm(x, epsilon=1e-8):
k = conv.kernel_size[0] return x * torch.rsqrt(torch.mean(torch.pow(x, 2), dim=1, keepdims=True) + epsilon)
n = conv.out_channels
scaling_factor = residual_block_count ** (-1.0 / (2 * m - 2))
sigma = sqrt(2 / (k * k * n)) * scaling_factor
conv.weight.data = conv.weight.data * sigma
return conv
def initialize_weights(net_l, scale=1): def initialize_weights(net_l, scale=1):
if not isinstance(net_l, list): if not isinstance(net_l, list):
@ -39,89 +34,6 @@ def make_layer(block, n_layers):
layers.append(block()) layers.append(block())
return nn.Sequential(*layers) return nn.Sequential(*layers)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class FixupBasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(FixupBasicBlock, self).__init__()
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.bias1a = nn.Parameter(torch.zeros(1))
self.conv1 = conv3x3(inplanes, planes, stride)
self.bias1b = nn.Parameter(torch.zeros(1))
self.relu = nn.ReLU(inplace=True)
self.bias2a = nn.Parameter(torch.zeros(1))
self.conv2 = conv3x3(planes, planes)
self.scale = nn.Parameter(torch.ones(1))
self.bias2b = nn.Parameter(torch.zeros(1))
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x + self.bias1a)
out = self.relu(out + self.bias1b)
out = self.conv2(out + self.bias2a)
out = out * self.scale + self.bias2b
if self.downsample is not None:
identity = self.downsample(x + self.bias1a)
out += identity
out = self.relu(out)
return out
class FixupBottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(FixupBottleneck, self).__init__()
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.bias1a = nn.Parameter(torch.zeros(1))
self.conv1 = conv1x1(inplanes, planes)
self.bias1b = nn.Parameter(torch.zeros(1))
self.bias2a = nn.Parameter(torch.zeros(1))
self.conv2 = conv3x3(planes, planes, stride)
self.bias2b = nn.Parameter(torch.zeros(1))
self.bias3a = nn.Parameter(torch.zeros(1))
self.conv3 = conv1x1(planes, planes * self.expansion)
self.scale = nn.Parameter(torch.ones(1))
self.bias3b = nn.Parameter(torch.zeros(1))
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x + self.bias1a)
out = self.relu(out + self.bias1b)
out = self.conv2(out + self.bias2a)
out = self.relu(out + self.bias2b)
out = self.conv3(out + self.bias3a)
out = out * self.scale + self.bias3b
if self.downsample is not None:
identity = self.downsample(x + self.bias1a)
out += identity
out = self.relu(out)
return out
class ResidualBlock(nn.Module): class ResidualBlock(nn.Module):
'''Residual block with BN '''Residual block with BN
---Conv-BN-ReLU-Conv-+- ---Conv-BN-ReLU-Conv-+-
@ -157,11 +69,7 @@ class ResidualBlockSpectralNorm(nn.Module):
self.conv1 = SpectralNorm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True)) self.conv1 = SpectralNorm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True))
self.conv2 = SpectralNorm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True)) self.conv2 = SpectralNorm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True))
# Initialize first.
initialize_weights([self.conv1, self.conv2], 1) initialize_weights([self.conv1, self.conv2], 1)
# Then perform fixup scaling
self.conv1 = scale_conv_weights_fixup(self.conv1, total_residual_blocks)
self.conv2 = scale_conv_weights_fixup(self.conv2, total_residual_blocks)
def forward(self, x): def forward(self, x):
identity = x identity = x