More checkpointing fixes

This commit is contained in:
James Betker 2021-09-16 23:12:43 -06:00
parent 94899d88f3
commit a6544f1684
4 changed files with 17 additions and 23 deletions

View File

@ -9,7 +9,7 @@ from models.gpt_voice.mini_encoder import AudioMiniEncoder, EmbeddingCombiner
from models.vqvae.vqvae import Quantize
from trainer.networks import register_model
import models.gpt_voice.my_dvae as mdvae
from utils.util import checkpoint, get_mask_from_lengths
from utils.util import get_mask_from_lengths
class DiscreteEncoder(nn.Module):
@ -248,22 +248,6 @@ class DiffusionDVAE(nn.Module):
zero_module(conv_nd(dims, model_channels, out_channels, kernel_size, padding=padding)),
)
def convert_to_fp16(self):
"""
Convert the torso of the model to float16.
"""
self.input_blocks.apply(convert_module_to_f16)
self.middle_block.apply(convert_module_to_f16)
self.output_blocks.apply(convert_module_to_f16)
def convert_to_fp32(self):
"""
Convert the torso of the model to float32.
"""
self.input_blocks.apply(convert_module_to_f32)
self.middle_block.apply(convert_module_to_f32)
self.output_blocks.apply(convert_module_to_f32)
def _decode_continouous(self, x, timesteps, embeddings, conditioning_inputs, num_conditioning_signals):
spec_hs = self.decoder(embeddings)[::-1]
# Shape the spectrogram correctly. There is no guarantee it fits (though I probably should add an assertion here to make sure the resizing isn't too wacky.)

View File

@ -294,9 +294,11 @@ class AttentionBlock(nn.Module):
num_heads=1,
num_head_channels=-1,
use_new_attention_order=False,
do_checkpoint=True,
):
super().__init__()
self.channels = channels
self.do_checkpoint = do_checkpoint
if num_head_channels == -1:
self.num_heads = num_heads
else:
@ -316,7 +318,10 @@ class AttentionBlock(nn.Module):
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
def forward(self, x, mask=None):
return checkpoint(self._forward, x, mask)
if self.do_checkpoint:
return checkpoint(self._forward, x, mask)
else:
return self._forward(x, mask)
def _forward(self, x, mask):
b, c, *spatial = x.shape

View File

@ -21,7 +21,7 @@ class AudioMiniEncoder(nn.Module):
res = []
for l in range(2):
for r in range(resnet_blocks):
res.append(ResBlock(ch, dropout, dims=1))
res.append(ResBlock(ch, dropout, dims=1, do_checkpoint=False))
res.append(Downsample(ch, use_conv=True, dims=1, out_channels=ch*2, factor=2))
ch *= 2
self.res = nn.Sequential(*res)
@ -32,7 +32,7 @@ class AudioMiniEncoder(nn.Module):
)
attn = []
for a in range(attn_blocks):
attn.append(AttentionBlock(embedding_dim, num_attn_heads))
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=False))
self.attn = nn.Sequential(*attn)
def forward(self, x):

View File

@ -41,6 +41,7 @@ class ResBlock(nn.Module):
up=False,
down=False,
kernel_size=3,
do_checkpoint=True,
):
super().__init__()
self.channels = channels
@ -48,6 +49,7 @@ class ResBlock(nn.Module):
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_scale_shift_norm = use_scale_shift_norm
self.do_checkpoint = do_checkpoint
padding = 1 if kernel_size == 3 else 2
self.in_layers = nn.Sequential(
@ -86,9 +88,12 @@ class ResBlock(nn.Module):
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
def forward(self, x):
return checkpoint(
self._forward, x
)
if self.do_checkpoint:
return checkpoint(
self._forward, x
)
else:
return self._forward(x)
def _forward(self, x):
if self.updown: