All the stuff needed for cheater latent generation

pull/9/head
James Betker 2022-06-19 23:12:52 +07:00
parent c5ea2bee52
commit a659cd865c
5 changed files with 361 additions and 1 deletions

@ -95,6 +95,8 @@ def create_dataset(dataset_opt, return_collate=False):
from data.audio.unsupervised_audio_dataset import UnsupervisedAudioDataset as D
elif mode == 'unsupervised_audio_with_noise':
from data.audio.audio_with_noise_dataset import AudioWithNoiseDataset as D
elif mode == 'preprocessed_mel':
from data.audio.preprocessed_mel_dataset import PreprocessedMelDataset as D
elif mode == 'grand_conjoined_voice':
from data.audio.grand_conjoined_dataset import GrandConjoinedDataset as D
from data.zero_pad_dict_collate import ZeroPadDictCollate as C

@ -0,0 +1,71 @@
import os
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.data
import torchaudio
import torchvision
from tqdm import tqdm
from utils.util import opt_get
class PreprocessedMelDataset(torch.utils.data.Dataset):
def __init__(self, opt):
path = opt['path']
cache_path = opt['cache_path'] # Will fail when multiple paths specified, must be specified in this case.
if os.path.exists(cache_path):
self.paths = torch.load(cache_path)
else:
path = Path(path)
self.paths = [str(p) for p in path.rglob("*.npz")]
torch.save(self.paths, cache_path)
self.pad_to = opt_get(opt, ['pad_to_samples'], 10336)
def __getitem__(self, index):
with np.load(self.paths[index]) as npz_file:
mel = torch.tensor(npz_file['arr_0'])
assert mel.shape[-1] <= self.pad_to
padding_needed = self.pad_to - mel.shape[-1]
mask = torch.zeros_like(mel)
if padding_needed > 0:
mel = F.pad(mel, (0,padding_needed))
mask = F.pad(mask, (0,padding_needed), value=1)
output = {
'mel': mel,
'mel_lengths': torch.tensor(mel.shape[-1]),
'mask': mask,
'mask_lengths': torch.tensor(mask.shape[-1]),
'path': self.paths[index],
}
return output
def __len__(self):
return len(self.paths)
if __name__ == '__main__':
params = {
'mode': 'preprocessed_mel',
'path': 'Y:\\separated\\large_mels',
'cache_path': 'Y:\\separated\\large_mels.pth',
'pad_to_samples': 10336,
'phase': 'train',
'n_workers': 0,
'batch_size': 16,
}
from data import create_dataset, create_dataloader
ds = create_dataset(params)
dl = create_dataloader(ds, params)
i = 0
for b in tqdm(dl):
#pass
torchvision.utils.save_image((b['mel'].unsqueeze(1)+1)/2, f'{i}.png')
i += 1
if i > 20:
break

@ -0,0 +1,272 @@
import itertools
from time import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.arch_util import ResBlock, AttentionBlock
from models.audio.music.gpt_music2 import UpperEncoder, GptMusicLower
from models.audio.music.music_quantizer2 import MusicQuantizer2
from models.audio.tts.lucidrains_dvae import DiscreteVAE
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
from models.diffusion.unet_diffusion import TimestepBlock
from models.lucidrains.x_transformers import Encoder, Attention, RMSScaleShiftNorm, RotaryEmbedding, \
FeedForward
from trainer.networks import register_model
from utils.util import checkpoint, print_network
def is_latent(t):
return t.dtype == torch.float
def is_sequence(t):
return t.dtype == torch.long
class MultiGroupEmbedding(nn.Module):
def __init__(self, tokens, groups, dim):
super().__init__()
self.m = nn.ModuleList([nn.Embedding(tokens, dim // groups) for _ in range(groups)])
def forward(self, x):
h = [embedding(x[:, :, i]) for i, embedding in enumerate(self.m)]
return torch.cat(h, dim=-1)
class TimestepRotaryEmbedSequential(nn.Sequential, TimestepBlock):
def forward(self, x, emb, rotary_emb):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb, rotary_emb)
else:
x = layer(x, rotary_emb)
return x
class SubBlock(nn.Module):
def __init__(self, inp_dim, contraction_dim, heads, dropout):
super().__init__()
self.attn = Attention(inp_dim, out_dim=contraction_dim, heads=heads, dim_head=contraction_dim//heads, causal=False, dropout=dropout)
self.attnorm = nn.LayerNorm(contraction_dim)
self.ff = FeedForward(inp_dim+contraction_dim, dim_out=contraction_dim, mult=2, dropout=dropout)
self.ffnorm = nn.LayerNorm(contraction_dim)
def forward(self, x, rotary_emb):
ah, _, _, _ = checkpoint(self.attn, x, None, None, None, None, None, rotary_emb)
ah = F.gelu(self.attnorm(ah))
h = torch.cat([ah, x], dim=-1)
hf = checkpoint(self.ff, h)
hf = F.gelu(self.ffnorm(hf))
h = torch.cat([h, hf], dim=-1)
return h
class ConcatAttentionBlock(TimestepBlock):
def __init__(self, trunk_dim, contraction_dim, time_embed_dim, heads, dropout):
super().__init__()
self.prenorm = RMSScaleShiftNorm(trunk_dim, embed_dim=time_embed_dim, bias=False)
self.block1 = SubBlock(trunk_dim, contraction_dim, heads, dropout)
self.block2 = SubBlock(trunk_dim+contraction_dim*2, contraction_dim, heads, dropout)
self.out = nn.Linear(contraction_dim*4, trunk_dim, bias=False)
self.out.weight.data.zero_()
def forward(self, x, conditioning, timestep_emb, rotary_emb):
h = self.prenorm(x, norm_scale_shift_inp=timestep_emb)
h = torch.cat([conditioning, h], dim=1)
h = self.block1(h, rotary_emb)
h = self.block2(h, rotary_emb)
h = self.out(h[:,:,x.shape[-1]:])
return h[:, 1:] + x
class TransformerDiffusion(nn.Module):
"""
A diffusion model composed entirely of stacks of transformer layers. Why would you do it any other way?
"""
def __init__(
self,
in_channels=256,
out_channels=512, # mean and variance
model_channels=1024,
contraction_dim=256,
time_embed_dim=256,
num_layers=8,
rotary_emb_dim=32,
input_cond_dim=1024,
num_heads=8,
dropout=0,
use_fp16=False,
# Parameters for regularization.
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
):
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.time_embed_dim = time_embed_dim
self.out_channels = out_channels
self.dropout = dropout
self.unconditioned_percentage = unconditioned_percentage
self.enable_fp16 = use_fp16
self.inp_block = conv_nd(1, in_channels, model_channels, 3, 1, 1)
self.time_embed = nn.Sequential(
linear(time_embed_dim, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
self.conditioner = nn.Linear(input_cond_dim, model_channels) if input_cond_dim != model_channels else nn.Identity()
self.unconditioned_embedding = nn.Parameter(torch.randn(1,1,model_channels))
self.rotary_embeddings = RotaryEmbedding(rotary_emb_dim)
self.layers = TimestepRotaryEmbedSequential(*[ConcatAttentionBlock(model_channels, contraction_dim, time_embed_dim, num_heads, dropout) for _ in range(num_layers)])
self.out = nn.Sequential(
normalization(model_channels),
nn.SiLU(),
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
)
self.debug_codes = {}
def get_grad_norm_parameter_groups(self):
attn1 = list(itertools.chain.from_iterable([lyr.block1.attn.parameters() for lyr in self.layers]))
attn2 = list(itertools.chain.from_iterable([lyr.block2.attn.parameters() for lyr in self.layers]))
ff1 = list(itertools.chain.from_iterable([lyr.block1.ff.parameters() for lyr in self.layers]))
ff2 = list(itertools.chain.from_iterable([lyr.block2.ff.parameters() for lyr in self.layers]))
blkout_layers = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.layers]))
groups = {
'prenorms': list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.layers])),
'blk1_attention_layers': attn1,
'blk2_attention_layers': attn2,
'attention_layers': attn1 + attn2,
'blk1_ff_layers': ff1,
'blk2_ff_layers': ff2,
'ff_layers': ff1 + ff2,
'block_out_layers': blkout_layers,
'rotary_embeddings': list(self.rotary_embeddings.parameters()),
'out': list(self.out.parameters()),
'x_proj': list(self.inp_block.parameters()),
'layers': list(self.layers.parameters()),
'time_embed': list(self.time_embed.parameters()),
}
return groups
def forward(self, x, timesteps, conditioning_input, conditioning_free=False):
unused_params = []
if conditioning_free:
cond = self.unconditioned_embedding.repeat(x.shape[0], x.shape[-1], 1)
else:
cond = self.conditioner(conditioning_input)
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
if self.training and self.unconditioned_percentage > 0:
unconditioned_batches = torch.rand((cond.shape[0], 1, 1),
device=cond.device) < self.unconditioned_percentage
cond = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(cond.shape[0], 1, 1),
cond)
unused_params.append(self.unconditioned_embedding)
with torch.autocast(x.device.type, enabled=self.enable_fp16):
blk_emb = self.time_embed(timestep_embedding(timesteps, self.time_embed_dim))
x = self.inp_block(x).permute(0,2,1)
rotary_pos_emb = self.rotary_embeddings(x.shape[1]+1, x.device)
for layer in self.layers:
x = checkpoint(layer, x, cond, blk_emb, rotary_pos_emb)
x = x.float().permute(0,2,1)
out = self.out(x)
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
extraneous_addition = 0
for p in unused_params:
extraneous_addition = extraneous_addition + p.mean()
out = out + extraneous_addition * 0
return out
class ConditioningEncoder(nn.Module):
def __init__(self,
cond_dim,
embedding_dim,
attn_blocks=6,
num_attn_heads=8,
do_checkpointing=False):
super().__init__()
attn = []
self.init = nn.Conv1d(cond_dim, embedding_dim, kernel_size=1)
for a in range(attn_blocks):
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing))
self.attn = nn.Sequential(*attn)
self.dim = embedding_dim
self.do_checkpointing = do_checkpointing
def forward(self, x):
h = self.init(x)
h = self.attn(h)
return h.mean(dim=2).unsqueeze(1)
class TransformerDiffusionWithConditioningEncoder(nn.Module):
def __init__(self, **kwargs):
super().__init__()
self.internal_step = 0
self.diff = TransformerDiffusion(**kwargs)
self.conditioning_encoder = ConditioningEncoder(256, kwargs['model_channels'])
self.encoder = UpperEncoder(256, 1024, 256).eval()
for p in self.encoder.parameters():
p.DO_NOT_TRAIN = True
p.requires_grad = False
def forward(self, x, timesteps, true_cheater, conditioning_input=None, disable_diversity=False, conditioning_free=False):
cond = self.conditioning_encoder(true_cheater)
diff = self.diff(x, timesteps, conditioning_input=cond, conditioning_free=conditioning_free)
return diff
def get_debug_values(self, step, __):
self.internal_step = step
return {}
def get_grad_norm_parameter_groups(self):
groups = self.diff.get_grad_norm_parameter_groups()
groups['conditioning_encoder'] = list(self.conditioning_encoder.parameters())
return
def before_step(self, step):
scaled_grad_parameters = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.diff.layers])) + \
list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.diff.layers]))
# Scale back the gradients of the blkout and prenorm layers by a constant factor. These get two orders of magnitudes
# higher gradients. Ideally we would use parameter groups, but ZeroRedundancyOptimizer makes this trickier than
# directly fiddling with the gradients.
for p in scaled_grad_parameters:
if hasattr(p, 'grad') and p.grad is not None:
p.grad *= .2
@register_model
def register_transformer_diffusion_with_point_conditioning(opt_net, opt):
return TransformerDiffusion(**opt_net['kwargs'])
@register_model
def register_tfdpc_with_conditioning_encoder(opt_net, opt):
return TransformerDiffusionWithConditioningEncoder(**opt_net['kwargs'])
def test_cheater_model():
clip = torch.randn(2, 256, 400)
cl = torch.randn(2, 1, 400)
ts = torch.LongTensor([600, 600])
# For music:
model = TransformerDiffusionWithConditioningEncoder(model_channels=1024)
print_network(model)
o = model(clip, ts, cl)
pg = model.get_grad_norm_parameter_groups()
if __name__ == '__main__':
test_cheater_model()

@ -339,7 +339,7 @@ class Trainer:
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_music_gpt.yml')
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_music_cheater_gen.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
args = parser.parse_args()
opt = option.parse(args.opt, is_train=True)

@ -378,5 +378,20 @@ class ChannelClipInjector(Injector):
return {self.output: inp[:,self.lo:self.hi]}
class MusicCheaterLatentInjector(Injector):
def __init__(self, opt, env):
super().__init__(opt, env)
from models.audio.music.gpt_music2 import UpperEncoder
self.encoder = UpperEncoder(256, 1024, 256).eval()
self.encoder.load_state_dict(torch.load('../experiments/music_cheater_encoder_256.pth', map_location=torch.device('cpu')))
def forward(self, state):
with torch.no_grad():
mel = state[self.input]
self.encoder = self.encoder.to(mel.device)
proj = self.encoder(mel)
return {self.output: proj}
if __name__ == '__main__':
print('hi')